

Students George Gruffydd Rowlands
Raphael Lüthy

Expert Nitish Patkar

Supervisor Norbert Seyff
 Nitish Patkar

Client Christian Dollfus

Project number 22HS_IIT21

University of Applied Sciences and Arts Northwestern Switzerland, School of Engineering

Windisch, January 2023

CEEX – Clean Energy Exchange
IP-5

Abstract
Clean Energy Exchange (CEEX) is a startup supported by the Swiss government to enable cus-
tomers to trade green, self-produced energy with other customers in their vicinity. This would
allow customers to sell their renewable energy to other customers instead of feeding it back
into the grid for energy providers to profit off. Lowering the distance from producer to a con-
sumer would allow for a more competitive market and therefore also reduce the basic cost of
energy in general. The initial state of the project was a previously finished IP6 thesis, which
created a design system and implemented a mostly static web app using Django and Angular.

One of our goals was to make the web app’s content more dynamic and create a deployment
pipeline, which ensures that the customer always has the most recent stable build. We prepared
a proxy so that the business logic, which is being developed at HSLU, can be accessed, and
served to the web app. As a temporary placeholder for the data of HSLU a fake data service was
implemented and published.

Another goal was to improve the usability of the web app using different tools such as tooltips,
adapting the design and layout, adding multilanguage support, and new components that help
the user to navigate through the web app more easily.

In summary, our work on the CEEX application has been focused on improving the customer
experience, making the website more dynamic and functional, improving the codebase and doc-
umentation for future development, and supporting the transition to clean energy for a more
sustainable energy system and future.

Keywords:

Angular, CI/CD, Clean Energy, Community, Django, Docker, Exchange, MySQL

 iii

Table of Contents
List of Figures ... v
Glossary.. vi
1 Introduction... 1

1.1 What is CEEX? .. 1
1.2 What are the goals of this project? ... 1
1.3 What was achieved with this project? ... 1

1.3.1 Deployed Dynamic Web Application .. 1
1.3.2 Enhance UI Look and Feel... 2

1.4 Structure of This Document ... 2
2 Initial State .. 3

2.1 P1: Hard Coded Components and Values .. 3
2.2 P2: Containerization and Pipeline .. 3
2.3 P3: Server .. 4
2.4 P4: Architecture .. 4
2.5 P5: Usability.. 5
2.6 P6: CSS Styling ... 5
2.7 List of the problems ... 5
2.8 Goals ... 5

2.8.1 Goal 1: Make the website available and usable ... 6
2.8.2 Goal 2: Make the website comprehensive and user-friendly ... 6

3 Solution .. 7
3.1 Dynamic Functionality .. 7
3.2 Data API Agreement ... 7
3.3 Fake Data API ... 8
3.4 Proxy ... 9
3.5 Codebase ... 10
3.6 Deployment .. 10
3.7 Refactoring .. 12
3.8 Libraries .. 13
3.9 Usability .. 13

3.9.1 Internationalization .. 13
3.9.2 Tooltips .. 14
3.9.3 Dialog Windows .. 15
3.9.4 Design .. 18

3.10 Results ... 20
4 Project Management .. 22

4.1 Work packages .. 22
4.1.1 WP1: Analysis work .. 22
4.1.2 WP2: Project Management .. 23
4.1.3 WP3: Prototyping ... 24
4.1.4 WP4: Software Development... 24
4.1.5 WP5: Validation ... 25
4.1.6 WP6: IP5 Report .. 25
4.1.7 Overall Time Plan .. 26

4.2 Development strategy .. 26
4.3 Requirements Engineering and Validation ... 26

5 Conclusion and Future Work .. 28
5.1 What has been achieved? .. 28

 iv

5.1.1 Publicly Available and Interactive Website ... 28
5.1.2 More Comprehensive User Experience ... 28

5.2 Future Work .. 28
5.2.1 Icons ... 28
5.2.2 Addresses ... 29
5.2.3 Map .. 30
5.2.4 Internationalization .. 30
5.2.5 HSLU Data ... 30
5.2.6 Registration .. 30

6 Reflection ... 31
6.1 Teamwork .. 31

6.1.1 Internally .. 31
6.1.2 Externally ... 31

6.2 Learnings ... 31
7 Bibliography .. 33
Declaration of Authenticity ... 34
Appendix ... 35
A Current State of UI ... 36
B Initial State of UI .. 39

 v

List of Figures
Figure 1 Screenshot of the inital dashboard code. 3
Figure 2 Overview of the initial architecture. 4
Figure 3 Duplicate code in Dashboard styling. 5
Figure 4 Response from the fake data API. 8
Figure 5 Flow diagram of how a request to the fake data API works. 9
Figure 6 Dockerfile to build the Django backend. 10
Figure 7 Docker Compose file to build and connect the services. 11
Figure 8 Overview Deployment Architecture 12
Figure 9 HTML and BODY elements being used in navbar component 12
Figure 10 Example of not needed div element in login component. 12
Figure 11 Row mixin being used to style the dashboard. 13
Figure 12 Globally defined mixin for working with flex rows and columns. 13
Figure 13 en.json containing keys and value for English content. 14
Figure 14 Navbar where the language can be set. 14
Figure 15 Translation key being used for content in the dashboard. 14
Figure 16 Tooltip in the registration form for Customer ID. 15
Figure 17 Code for the tooltip for the energy required stat on the dashboard. 15
Figure 18 The resulting tooltip on the dashboard. 15
Figure 19 The resulting dialog window. 16
Figure 20 The "learn more" link which opens the dialog window. 16
Figure 21 The Dialog component receiving the reference to itself and injected data. 16
Figure 22 The code to open a dialog window, pass information and handle the "afterClosed" event.
 17
Figure 23 The initial state of the profile page. 18
Figure 24 The new implementation of the profile page. 19
Figure 25 Screenshot of Feedback which then was given in a Meeting 20
Figure 26 Short Feedback via Slack 21
Figure 27 Silent / No Feedback from Customer, mostly interacted with Coach / Project Lead 21
Figure 28 Screenshot Workpackage 1.1 from the Project Agreement 22
Figure 29 Screenshot Workpackage 1.2 from the Project Agreement 23
Figure 30 Screenshot Workpackage 2 from the Project Agreement 23
Figure 31 Screenshot Workpackage 3 from the Project Agreement 24
Figure 32 Screenshot Workpackage 4 from the Project Agreement 24
Figure 33 Screenshot Workpackage 5 from the Project Agreement 25
Figure 34 Screenshot Workpackage 6 from the Project Agreement 25
Figure 35 Time Beam of the originally planned time frames 26
Figure 36 Example of a Protocol with Requirements 27
Figure 37 Correct way of using material icons font. 29

https://fhnw365.sharepoint.com/teams/p-ip6_clean_energy_exchange_m365/Freigegebene%20Dokumente/General/Report/IP5_Report_CEEX_KORREKTUR.docx#_Toc125133372
https://fhnw365.sharepoint.com/teams/p-ip6_clean_energy_exchange_m365/Freigegebene%20Dokumente/General/Report/IP5_Report_CEEX_KORREKTUR.docx#_Toc125133377
https://fhnw365.sharepoint.com/teams/p-ip6_clean_energy_exchange_m365/Freigegebene%20Dokumente/General/Report/IP5_Report_CEEX_KORREKTUR.docx#_Toc125133379
https://fhnw365.sharepoint.com/teams/p-ip6_clean_energy_exchange_m365/Freigegebene%20Dokumente/General/Report/IP5_Report_CEEX_KORREKTUR.docx#_Toc125133380
https://fhnw365.sharepoint.com/teams/p-ip6_clean_energy_exchange_m365/Freigegebene%20Dokumente/General/Report/IP5_Report_CEEX_KORREKTUR.docx#_Toc125133387

 vi

Glossary

Grid “Electrical grid,” “energy grid” or commonly just the “the grid” re-
fers to the interconnected network that is responsible for delivering
electricity from producers to consumers.

PV system Solar Panel system, used to create electricity out of sunlight.

Portainer Docker Container Management Solution

GitHub Hosting Solution for Source Code Version Management

CI/CD Continuous Integration and Delivery achieved through pipelines

SASS Extension Library that operates on CSS

CSS Language used to style websites

1 Introduction

1.1 What is CEEX?
In recent years energy prices have risen, according to [1] ,which made a lot of customers unhappy.
These challenges have motivated the development of new technologies and methods for energy gen-
eration and distribution, with independent trading communities being a potential solution. These com-
munities will soon be made possible by changes in the law [2] that will open the Swiss electricity
market to the public, promoting competition, offering economic advantages to consumers by avoiding
additional charges for infrastructure, and strengthening network stability. CEEX aims to create an
open and self-regulated market for communities to exchange clean and renewable energy through its
energy trading platform, which enables customers such as private households to buy and sell sustain-
ably produced energy among themselves. CEEX utilizes a powerful algorithm based on graph tech-
nologies1, developed with ETH Zurich, to calculate real-time prices based on location, supply, and
demand. CEEX also provides trading strategies that allow consumers and producers to save money
by circumventing usage fees from large providers. Using a matching algorithm designed by ETH and
implemented at HSLU, the platform matches suppliers to consumers depending on different trading
strategies. The focus of this project is on the customer facing application, which contains a web app
and a simple backend layer for authentication, and other smaller services that interact with each other.

The initial iteration of CEEX was a bachelor thesis completed by two students and an intern, which
included a style system in Figma, a static Angular2 prototype for the web app, and a Python backend
layer built using the Django3 framework. However, the focus of the previous project was on design,
resulting in a codebase that was not ready for production and not prepared for deployment.

1.2 What are the goals of this project?
In the project agreement, we identified two main objectives:

1. To develop a dynamic web application with a robust pipeline for deployment to a publicly
accessible website.

2. To enhance the existing user interface by incorporating features that aid navigation within the
complex realm of the energy market.

1.3 What was achieved with this project?
In this chapter, we will briefly showcase what we accomplished.

1.3.1 Deployed Dynamic Web Application
After one month of working our way into the project, we got told by the customer that the highest
priority was to have a working website online. Thus, we designed and developed a deployment pipe-
line to an FHNW owned server. Afterwards, we focused on removing the hard coded content and
replaced it with dynamically loaded data.

1 Graph algorithms: https://www.geeksforgeeks.org/graph-data-structure-and-algorithms/ (19.01.2023)
2 Angular: https://Angular.io/start (20.01.2023)
3 Django: https://www.djangoproject.com/ (20.01.2023)

https://www.geeksforgeeks.org/graph-data-structure-and-algorithms/
https://angular.io/start
https://www.djangoproject.com/

 2

1.3.2 Enhance UI Look and Feel
We implemented three important features to enhance the web app’s usability: Multilanguage support,
tooltips, and dialog windows. We also restructured the web app so that the design was more concise
and highlighted some key features to make them more easily accessible and simpler to work with.

1.4 Structure of This Document

- Chapter 2 of this report details the initial conditions of the project and identifies the primary
challenges we encountered and identified.

- In Chapter 3, we will examine the strategies and approaches implemented to address these
issues.

- Chapter 4 delves into the project management techniques employed during the project.
- Chapter 5 outlines potential areas for future development and expansion and lists what we

achieved in this project.
- Finally, Chapter 6 concludes the report with a reflection on the project itself.

 3

2 Initial State
After conducting an initial review of the initial state of the project and consulting with our customer,
we identified the following problems with the initial state of the application:

2.1 P1: Hard Coded Components and Values
All the data and images displayed were hard-coded, instead of being dynamically loaded from a
source. This made the web application non-interactive for users and hard to showcase to potential
customers and stakeholders. The solution to this problem required all hard-coded values to be identi-
fied, rewritten, and abstracted into a new component.

Let's examine the initial state of Figure 1.

Figure 1 Screenshot of the inital dashboard code.

Link to the file at the time of the start of the project: GitHub Repository4

The file shows the code for the cards that are intended to display various metrics on the dashboard.
However, these values are not connected to the data that can be retrieved from the backend or business
logic, but rather set as text. This issue is found throughout the entire source code, resulting in an
excessive amount of code duplication.

2.2 P2: Containerization and Pipeline
The initial codebase only contained the basic structures created by the frameworks used, and there
were no files for Docker or any other containerization technology. This resulted in several issues,

4 https://github.com/FHNW-CEEX-IP6/clean-energy-exchange-

app/blob/ed4705f8335012f253ab7df9ef467efa6378c5ae/frontend/src/app/components/dashboard/dashboard.component.html
(15.01.2023)

https://github.com/FHNW-CEEX-IP6/clean-energy-exchange-app/blob/ed4705f8335012f253ab7df9ef467efa6378c5ae/frontend/src/app/components/dashboard/dashboard.component.html
https://github.com/FHNW-CEEX-IP6/clean-energy-exchange-app/blob/ed4705f8335012f253ab7df9ef467efa6378c5ae/frontend/src/app/components/dashboard/dashboard.component.html
https://github.com/FHNW-CEEX-IP6/clean-energy-exchange-app/blob/ed4705f8335012f253ab7df9ef467efa6378c5ae/frontend/src/app/components/dashboard/dashboard.component.html

 4

such as compatibility issues which can come up during development due to different devices, differ-
ent operating systems, or different dependency installations. The initial codebase is also not ready to
be deployed as there would be multiple issues when trying to communicate between different services
in a different environment, because a lot of environment configurations are hard coded.

2.3 P3: Server
No server was used or provided to us in the initial prototype development, which is essential for the
final deployment and is necessary for us to acquire and configure.

2.4 P4: Architecture
The customer and external teams were not yet certain on how the solution's architecture would appear
and had not fully discussed the entire data flow from the client facing application to the back. The
initial architecture is shown in Figure 2.

Figure 2 Overview of the initial architecture.

We were initially made aware that there was a web application and a service for business logic. The
web application has a frontend and a backend separate from the business logic, which, from an archi-
tectural point of view, is less optimal, as the backend usually handles the logic and the permission
system together and isn’t split in two parts. This approach will lead to issues regarding stability and
latency.
Having the logic split from the authentication system also means that there must be another way to
be defined for how the business logic will authenticate the requests coming in.
It was also not yet defined which database serves as the source of truth for the data displayed on the
webapp. The codebase suggested that the data, such as the data for the graphs, was being duplicated
in both databases. This presented a major issue, as the web application would need to synchronize the
data between the 2 databases for it to be able to display the correct data.
Generally, having redundant systems like this always add additional complexity for system opera-
tions, which is less optimal for this projects’ current state.

 5

2.5 P5: Usability
The user interface for CEEX must be clear and self-explanatory, while also providing detailed in-
structions and information if needed, as the trading of energy is complex, and any inaccuracies may
result in financial losses. According to the previous feedback and the clients wishes there was defi-
nitely still improvement potential as certain features and concepts are still very confusing for custom-
ers.

2.6 P6: CSS Styling
A common practice when working with web apps is to use libraries that enhance the styling experi-
ence. One such library is SASS which offers some nice features such as variables and functions with-
out changing the overall way CSS is used. This was also included and used in the first increment of
the project. However, these features were not made use of which resulted in a lot of duplicate styles
across components but also within components. There was also no attempt made of defining global
styles that could be used across the entire web app.

Figure 3 Duplicate code in Dashboard styling.

2.7 List of the problems
The above discussed problems conclude to following list:

- P1: Hardcoded data in components that do not display data from business logic.

- P2: Non-functioning pipeline and lack of preparation for virtualization.

- P3: No server or infrastructure available for deployment.

- P4: Unclear architecture and undefined data ownership.

- P5: Missing information in web application for a complex domain.

- P6: CSS Styling redundancy and SASS features were not used.

2.8 Goals
Our main goal was to provide the customer with an application, that was available online and inter-
actable so that it could be showcased to customers, shareholders, and potential investors. Another
goal was to improve the usability for users, since the domain of electricity trading is very complex
and must be well understood, especially when money is involved. Below we summarize and provide
details about the goals we wanted to achieve:

 6

2.8.1 Goal 1: Make the website available and usable
This goal initially did not have the highest priority, however after some initial work on the codebase,
it was very apparent that the current state of the web application didn’t allow for extensive research
on improving the user interfaces usability. Therefore after a few iterations of the project agreement,
we decided to make this our highest priority which will also make up the biggest part of our work.
This involves multiple steps:

- Prepare code base for deployment.

- Setup a deployment pipeline and prepare a server to deploy the application to.

- Clean up the codebase:
o Replace hard coded values with dynamically loaded values.
o Abstract components so that they can be reused.

2.8.2 Goal 2: Make the website comprehensive and user-friendly
The second goal was mostly defined by the initial project proposition, to evaluate and add features
that help the user to navigate through the app, such as:

- Tooltips

- Multilanguage

- Modals for more detailed content
The changes are supposed to help the user through the webapp, since energy trading is already very
complicated and since money is involved, having the user as good informed as possible is very im-
portant.

 7

3 Solution
In this chapter we will describe our solution and the methods used to achieve the obtained solution.
To solve the before mentioned problems and satisfy our goals we in summary obtained the following
list of things to improve:

- Dynamic Functionality, to solve P1 and P4 we agreed upon data ownership with HSLU and
made the web app’s content more dynamic and functional.

- Usability, to solve P5 we implemented components and changed existing components and
design.

- Codebase, to solve P2, P3, and P6 we refactored the code and setup a pipeline which deploys
the CEEX application to a FHNW server.

3.1 Dynamic Functionality
In the first implementation almost all the web app’s content was statically written in the HTML tem-
plates, as described under P1, the only exception to this being the functionality of registering and
logging in. In the Django backend, some endpoints had been made with some hard coded data that
could be expected to come but from HSLU. However, these endpoints were not hooked up to the web
app and the content, structure and formatting of the data had only been based on guesswork, nothing
had yet been discussed and defined with HSLU.

3.2 Data API Agreement
Once we had a good understanding of the project, what were the problems, what needed to be done
etc. we held a meeting with HSLU to discuss the data flow of the application. This included who
would own what data, what was to be expected from either parties and in what format. The agreement
we came to can be found in reference [3] .We will shortly summarize here what was agreed upon
with HSLU:

- We would only be responsible for data related to the user and his authentication, this includes
the data that is required to sign up such as passwords, email address etc. but also includes a
user’s settings in the web app such as language preferences.

- However, we agreed that any data related to the trading process HSLU would be responsible
for and we would query via a proxy built into our backend. This includes price histories,
information on energy sources such as PV Systems and other metrics.

 8

3.3 Fake Data API
Unfortunately, during our project period HSLU was not able to finish their
API to provide us the data related to trading. So, we instead implemented a
“fake data” API that simulates the data coming from HSLU in the agreed
upon format. By implementing this API, we are still able to work with non-
static data and implement dynamic functionality into the web app. The
RESTful API was created using Next.js5 and makes use of the Faker6 library
to generate random but meaningful data. For more information on how an
API can be implemented using Next.js we refer to the official documenta-
tion on Next.js7.

5 Next.js: https://nextjs.org/ (20.01.2023)
6 Faker: https://fakerjs.dev/ (20.01.2023)
7 Next.js documentation on API routes: https://nextjs.org/docs/api-routes/introduction (20.01.2023)

Figure 4 Response from the fake data API.

https://nextjs.org/
https://nextjs.org/docs/api-routes/introduction

 9

3.4 Proxy
We implemented a proxy service in our backend to be able to query the HSLU/fake data API. This is
a common and good practice as it decouples the separate services which follows the design principle
of “separation of concerns”.

By having a proxy endpoint, we also avoid the need of having to duplicate the HSLU database in our
database. If this was not the case the implementation of our service would be much more complex as
we would need to always make sure, that the databases are synchronized between each other.

The proxy endpoint is accessed using the “/proxy/requests” path and must contain two fields in the
body, one for the desired destination at the fake data API and another one for the HTTP request
method. The Django server then builds a new request using the provided information and sends it to
the fake data API. The response from the fake data API is then forwarded back to the web app.

Figure 5 Flow diagram of how a request to the fake data API works.

 10

3.5 Codebase
Our work was not only limited to adding new or changing existing features. We also refactored a lot
of the code in aid of future development. A pipeline was also implemented to build, containerize, and
deploy the application for a better developer experience but also to allow for quick customer feedback
on implemented changes and features.

3.6 Deployment
As already mentioned, we implanted a pipeline that automatically builds our application consisting
of the Angular web app, Django backend and MySQL database. All these services are built within
their own container using Docker8. This results in less compatibility issues. Compatibility issues can
occur during development due to multiple reasons such as: different devices, operating systems, cod-
ing setups or dependency installations. Instead, if the application is containerized, each container is
its own contained system and is told exactly how and which dependencies and versions to install and
how to build and start the service. To further improve the codebase environment variables were also
added that are referenced during container creation but also in the services themselves, this avoids
redundancy in the code. Environment variables also allow for the services to be easily configured for
different environments.

Figure 6 Dockerfile to build the Django backend.

The containerized services are then connected using Docker Compose9, which also allows us to pass
certain environment variables to multiple containers at the same time to configure them and creates
a virtual network10 which all containers are a part of.

8 Docker getting started: https://docs.docker.com/get-started/ (20.01.2023)
9 Docker Compose: https://docs.docker.com/compose/ (20.01.2023)
10 https://docs.docker.com/compose/networking/ (20.01.2023)

https://docs.docker.com/get-started/
https://docs.docker.com/compose/
https://docs.docker.com/compose/networking/

 11

Figure 7 Docker Compose file to build and connect the services.

This process is a common industry standard as it later also makes deploying the application to a server
easier and more flexible. To deploy our application, we implemented the following pipeline, as visu-
alized in Figure 8:

1. A developer merges a new pull request into the development branch and if it is a major
version then also merges the development branch later into the main branch.

2. Then the Github workflows11 build docker images for each of the services and pushes
them to Docker Hub12 at hub.docker.com, a public image registry, using a provided
docker account.

3. After pushing the images to Docker Hub, the GitHub workflow calls the Portainer
API13, which is hosted on a FHNW SwitchEngine14, with a webhook to then trigger
the deployment of the most recent images. Portainer then pulls the images correspond-
ing to the latest version of the application from the registry and deploys them on the
server using Docker Compose, using a specific, for deployment optimized configura-
tion file.

4. Then, depending on which branch was merged or pushed into, the application is either
deployed to “app.ceex.ch” (production build) or “dev.ceex.ch” (development pre-
view).

11 GitHub Workflows: https://docs.github.com/en/actions/using-workflows (20.01.2023)
12 Docker Hub: https://hub.docker.com/ (20.01.2023)
13 Portainer Webhook: https://docs.portainer.io/user/docker/services/webhooks (20.01.2023)
14 Switchengine Website: https://www.switch.ch/engines/ (20.01.2023)

https://docs.github.com/en/actions/using-workflows
https://hub.docker.com/
https://docs.portainer.io/user/docker/services/webhooks
https://www.switch.ch/engines/

 12

Figure 8 Overview Deployment Architecture

3.7 Refactoring
A major part of our work included refactoring the existing code where we followed the camp site
rule, to leave the code better then how it was found when making a change.

This resulted in us removing the guessed data structures in the backend, as we had discussed and
agreed with HSLU that they would be responsible for those pieces of data, as we later defined in the
API Document [3]. We also removed some duplicate and obsolete code along the way whilst trying
to keep all endpoints as standardized and simple as possible in the Django server.

However, the main refactoring work was done in the
web app. We found that for example a lot of unnec-
essary DIV elements were being used to just assign a
class name to a single element, instead these class
names could be assigned straight to the element. An-
other common mistake made was that the HTML and
BODY elements were often included in the HTML
template for an Angular component, however, this is
not mandatory to add them.

Figure 10 Example of not needed div element in login component.

We also completely changed the styling process by correctly using SASS features and global styles
in aid of resolving P6. As mentioned, we found that a lot of styling was being duplicated across
elements and components. So, we instead created commonly used classes as part of the global styles,
such as card-title and card-value. We also defined SASS variables. As example, for the green accent
color, we added such a variable which then can be imported and used throughout the frontend. Using
SASS variables is especially handy for theming the web app without having to change the same value

Figure 9 HTML and BODY elements being used in navbar component

 13

in multiple places. SASS also offers so-called “mixins”15 which are like functions that can be
called/included to further remove duplicate code. These mixins were especially useful for working
with flex columns and rows but also for defining fonts.

3.8 Libraries
Before we started with development, we made sure that all libraries where up to date. Whilst doing
this we realized the map library which was being used had been deprecated for quite a while and
therefore needed to be replaced. We also removed some libraries that were added presumably during
the experimentation or learning phase of the prototype development and were therefore no longer
needed. By updating libraries and removing unused ones we could work with more stable libraries
and achieve a slimmer build.

3.9 Usability
From previous feedback on the prototype and our own analysis we found that the usability of the web
app required improvement. The web app requires improvement in usability, as a lot of users found
that the trading of energy between households is a complex task and requires a lot of knowledge in
the required fields. However, users of CEEX should not need to know the ins and outs of the system,
instead it should be abstracted and kept as simple as possible. The CEEX web app is also not meant
to be interacted with as often as a stock exchange, prices and settings do not need to be constantly
monitored as they are less volatile, and the trading strategies designed by HSLU take over the trading
process for the user.

3.9.1 Internationalization
To make the web app more user-friendly and accessible, it offers the user the choice of either English,
French, or German. Not only does this aid the user in using the web app more comfortably, as it might
be in their mother tongue or a language they are comfortable with, but also opens the possibility for
new customers that previously were not interested in CEEX due to the language barrier and the daunt-
ing task of working with a tool in a less familiar language.

The internationalization was implemented using the ngx-translate16 library for Angular. The library
can be used to define content in multiple different languages and dynamically change the content of
the frontend at runtime unlike the Locales17 library which builds a separate web app for each language.

15 https://sass-lang.com/documentation/at-rules/mixin (20.01.2023)
16 ngx-translate: http://www.ngx-translate.com/ (20.01.2023)
17 Locales by Angular: https://Angular.io/guide/i18n-common-overview (20.01.2023)

Figure 12 Globally defined mixin for working with flex rows and columns. Figure 11 Row mixin being used to style the dashboard.

https://sass-lang.com/documentation/at-rules/mixin
http://www.ngx-translate.com/
https://angular.io/guide/i18n-common-overview

 14

To internationalize the web app of CEEX, a JSON file is defined for each language: “en.json”,
“de.json”, and “fr.json”. Then the so-called TranslationModule is added to the root of the application.
The JSON files contain the same keys but have different values corresponding to the translation of
the content in that language. Because the translations are written in JSON, they can be nicely struc-
tured to make the code more readable.

Figure 13 en.json containing keys and value for English content.

The keys pointing to the translations can then be referenced in the HTML templates of the web app
components and fed into a pipe18 function to translate them using the currently active language setting,
which is set using the dropdown in the navigation bar. However, making the web application suitable
for multilanguage support did have the consequence of having to change the font, as the originally
picked font, Dongle, did not support the special symbols “öäü”, which are commonly used in German.
Instead, we decided to use the Roboto font as this is the standard material theme font19 and was there-
fore already being used in the application.

Figure 14 Navbar where the language can be set.

Figure 15 Translation key being used for content in the dashboard.

3.9.2 Tooltips
Tooltips are a great way to give a user more information about a feature without crowding the web
app with information and then decreasing the usability again by making things hard to find. For ex-
ample, in user tests with the prototype users gave the feedback that certain fields were hard to under-
stand, such as the “Customer ID” field in the registration form. They were confused as to what was
required to be entered and were unsure as where they could find the required information. By adding
a tooltip here, we can quickly and elegantly provide with a short explanation.

18 https://www.knowledgehut.com/blog/web-development/pipes-in-Angular (20.01.2023)
19 https://m3.material.io/styles/typography/overview (20.01.2023)

https://www.knowledgehut.com/blog/web-development/pipes-in-angular
https://m3.material.io/styles/typography/overview

 15

Figure 16 Tooltip in the registration form for Customer ID.

The Tooltips were implemented as a component, so that they could be reused throughout the web
app. The material theme already offers tooltips, however these were not quite satisfactory, as our
tooltips need to have multi-language support. So, we based our component off the material theme
tooltip but enhanced it according to our requirements. The component can then be used like any other
component in the html template. It takes the contents translation key as an attribute so that it can be
dynamically translated.

Figure 17 Code for the tooltip for the energy required stat on the dashboard.

Figure 18 The resulting tooltip on the dashboard.

For more examples of where tooltips were used, we refer to Appendix A, that shows the current state
of the web app’s UI.

3.9.3 Dialog Windows
In certain circumstances a tooltip is not enough to convey information to the user. This could be the
case if the text is too long or if the user would benefit of a visual explanation such as an image or
video. This for example is the case for the trading strategies, as they are all very different and can be
very interesting to people that would like to know the ins and outs of the system but also for someone
who would just like some general information on CEEX. A dialog window, or also commonly called
modal or popup, is a small window, that overlays the current page and contains additional content.

 16

Currently the dialogs are only used to give additional information for the trading strategies which can
be opened with the “learn more” link.

Figure 20 The "learn more" link which opens the dialog window.

However, in the future dialog windows could also be used in the
previously mentioned example for the customer ID field in the
registration to show an example image of a bill and where the cus-
tomer ID is located. They are also commonly used as containers for input forms. This could be applied
for example to the form that is required to put information about an energy source in if a user would
like to be a producer, or for a user to change his password or address.

To implement the dialog windows, we used the built-in dialogs from the material theme, as it is well
implemented, and it already fulfills all our needs. The material theme dialog windows make use of
the observable pattern20 like many other implementations in Angular. So, knowing this design pattern
is highly suggested.
Each dialog window is a separate component, just like any other Angular component with SASS
styling and a HTML template for structure. In addition, the dialog component receives a
“MatDialogRef<DialogComponentName>” parameter, a reference to itself and it also can be passed
different content to make the displayed content dynamic.

Figure 21 The Dialog component receiving the reference to itself and injected data.

The reference to itself is then used to close the window and send back any information to the callee.
In order to display the modal, the callee needs to pass the dialog component to the “dialog.open()”

20 https://en.wikipedia.org/wiki/Observer_pattern (20.01.2023)

Figure 19 The resulting dialog window.

https://en.wikipedia.org/wiki/Observer_pattern

 17

function with any data to be passed. This function then returns an observable object, where we can
subscribe to a callback function for a specific event, which is called when the user closes the dialog
window. This can be used to receive any data from the closed modal.

Figure 22 The code to open a dialog window, pass information and handle the "afterClosed" event.

 18

3.9.4 Design
The design of a website can have a great effect on its usability21. The previous implementation already
had a good design system which was created in Figma. However, the implementation of the design
was lacking as it was not consistent across pages or components and certain features could be high-
lighted better.

Consistency in design such as spacing, coloring and layout can aid the user when using the website,
as they become more familiar with it and find information where they expect it to be. Using consistent
typesetting (font and font sizing) does not only look better but if done correctly, small things such as
headings can lead the users view to the correct place. It is also important that key features are high-
lighted either with icons or other means such as shadows or color. These features then stand out more
and can be found easier.

In our implementation of the design, we laid heavy focus on making everything as consistent as pos-
sible. This allowed us to refactor the CSS styling and HTML templates heavily, so that they can be
reused in multiple occasions and do not require each component to define its own styling. For further
details on the refactoring process, we refer to the previous chapter on Codebase.

We also decided to use the CEEX green color more often throughout the web app to highlight key
features in order to aid the user in finding key features quicker.

Figure 23 The initial state of the profile page.

21 Adobe Design Principles: https://helpx.adobe.com/indesign/how-to/design-principles.html

 19

Figure 24 The new implementation of the profile page.

To see more differences in the design we refer to comparing Appendix A, the current UI to Appendix
B the old UI.

 20

3.10 Results
We were easily able to validate our work thanks to the implemented live deployment. Once the new
features were implemented, we could see our changes at dev.ceex.ch and receive feedback from the
client via meetings or slack messaging.
As shown in Figure 25, if there was any more detailed feedback to be given, a spontaneous meeting
was scheduled.

Figure 25 Screenshot of Feedback which then was given in a Meeting

Normally, we received either very short answers (Figure 26) or just silent agreement (Figure 27).
When the customer was asked to give feedback, during meetings, we hadn’t received any negative
responses.

 21

Figure 26 Short Feedback via Slack

Figure 27 Silent / No Feedback from Customer, mostly interacted with Coach / Project Lead

We did not manage to perform any in-depth used testing due to time constraints and lack of users, as
the website has no clients onboarded yet.

 22

4 Project Management
Even though we had originally planned and defined the timeframes for each work package, we found
that it was hard to stick to these timeframes. This is due to the fact that one of us was doing an
exchange semester at Seoul National University and the required coursework and time difference
made it difficult to stay within the set boundaries. This resulted in an asynchronous workflow, which
we managed to overcome by separating tasks in a way that allowed us to work independently. We
often met and discussed the projects and the tasks to be done, but we minimized dependencies be-
tween each other, which ultimately led to a successful outcome.

4.1 Work packages
During the project, we revised and ultimately settled on several work packages, which we will now
discuss:

4.1.1 WP1: Analysis work

Figure 28 Screenshot Workpackage 1.1 from the Project Agreement

We were able to minimize time for this work package as we were able to use our previous work
experience to conclude the necessary decisions that would have been impacted by this research.

 23

Figure 29 Screenshot Workpackage 1.2 from the Project Agreement

This work package took longer than we had originally allocated for it, as the initial codebase was
difficult to understand. This was also affected by the initially unclear project goal and the complex
domain of electricity trading. Despite this, we were able to deliver the planned deliverables and we
believe that allocating more time to this package was the right decision as it saved us time in the long
run.

4.1.2 WP2: Project Management

Figure 30 Screenshot Workpackage 2 from the Project Agreement

We tried to run with the set activities and deliverables, but due to the turbulent start and our special
circumstances we decided to minimize any work on project management as the roadmap and the
general management changed frequently enough to warrant not spending any more time on this mat-
ter.

We attempted to integrate Jira into our workflow, but as a two-person team, we decided to abandon
it as it seemed to be an inefficient use of our already limited time and since it was not specifically
required by the IP5 coach team or the customer, it was really low on our priority list. Instead, we

 24

managed our workflow by creating meeting protocols and having more detailed discussions over
WhatsApp. As experienced developers, we concluded that this approach would suffice as we trust
each other's skills.

4.1.3 WP3: Prototyping

Figure 31 Screenshot Workpackage 3 from the Project Agreement

We spent way less time on prototyping as we primarily conducted it during meetings with the cus-
tomer or by sending screenshots of the current website with a placeholder for the proposed change.
With some answered questions through slack the prototypes were accepted without a lot of issues.
Overall, we agree with our decision to minimize prototype work, as we focused mostly on function-
ality then design.

4.1.4 WP4: Software Development

Figure 32 Screenshot Workpackage 4 from the Project Agreement

The software development took up the majority of our allocated time. We were able to complete our
deliverables and carry out the planned activities.

 25

4.1.5 WP5: Validation

Figure 33 Screenshot Workpackage 5 from the Project Agreement

During the project, we were able to significantly reduce the validation time as the customer only had
to provide minimal feedback on the latest changes. Additionally, much of the work was focused on
architecture, making it challenging to validate the technical details. Despite this, the customer was
satisfied with the outcome of our pipeline and we determined that further validation was not neces-
sary. We also did not conduct validation with end customers as we primarily focused on implementing
functionality, and the UI changes we made were mainly to correct logical errors and adhere to com-
mon practices such as including tooltips. We concluded that the customer would suffice as validation.

4.1.6 WP6: IP5 Report

Figure 34 Screenshot Workpackage 6 from the Project Agreement

For the report, we had to do the most part at the end of the project, since a lot of key factors changed
suddenly during this project, which could have led to a lot of work becoming outdated. We still kept
notes, mostly for technical documentation, which we then could polish up and add to the report.
Due to planning mistakes regarding the winter break and upcoming exams, we were forced to work
on the report way later then we should have. This resulted in a hectic writing and review process
which was preventable.

 26

4.1.7 Overall Time Plan

Figure 35 Time Beam of the originally planned time frames

The above are the original timeframes that we planned. We were mostly able to meet the deadlines,
but occasionally had to extend the end date slightly.

4.2 Development strategy
Initially, we decided to use the agile development approach as we were both familiar with it from the
IP34 project. However, as the initial phase of the project progressed, it became increasingly difficult
to achieve this approach due to the circumstances we faced. One major factor was the time spent
trying to identify the problem we needed to solve; we realized we needed to fix the underlying struc-
ture of the project before making any improvements to the user interface. This resulted in the devel-
opment period starting much later than originally planned. Additionally, constant changes in require-
ments, priorities and the sudden need for a deployed website added to the challenges. Furthermore,
the time zone difference between team members and the workload of the exchange semester made it
difficult to conduct effective stand-up meetings and led to initially uneven distribution of work. All
these issues prompted us to adopt a more iterative approach, which allowed us to have a flexible time
schedule, easily showcase changes and make adjustments through spontaneous meetings and the pipe-
line we set up.

4.3 Requirements Engineering and Validation
Our requirements gathering and validation were mostly done in an ad-hoc manner, as we had a direct
line of communication with our customer with Slack. This allowed us to receive fast feedback and
clarify any questions we had as we did not have to wait until the end of the sprint to add a new
requirement. Furthermore, we were mostly provided with goals to achieve by our customer and were
given a great deal of freedom in how we approached each solution.
We also incorporated feedback from a previous project into our backlog.

A protocol from such a meeting would look like Figure 36.

 27

Figure 36 Example of a Protocol with Requirements

 28

5 Conclusion and Future Work

5.1 What has been achieved?
The following to general goals will be discussed: “Publicly Available and Interactive Website” and
“More Comprehensive User Experience”.

5.1.1 Publicly Available and Interactive Website
We believe that we were able to fully achieve the first goal of making the publicly available and
usable with our implementation of the deployment pipeline and replacing static data with data pro-
vided by the fake data API.
Since we set up the pipeline and the server, the website has since been accessible without any big
issues. Since we never got a message, that the website is unreachable from our customer via Slack or
Email, we are satisfied with our solution.
We also are now loading the data for the graphs from our external service, and we prepared the other
sections, so that they can be connected as well.

However, we would have preferred it if we could have used HSLU’s API as this would have saved
us time and we could have achieved more functionality.

5.1.2 More Comprehensive User Experience
With the addition of features like Multi-Language, Tooltips and Modals we were able to provide the
customer with more concise information. By letting users interact with the webapp in whatever lan-
guage they prefer we achieve a more welcoming user interface. And by allowing them to get more
information by hovering an icon or clicking a “Learn More” button, we increase the user experience
should increase considerably, according to [4] (Point 3, “Provide In-Depth Information”) by Adobe,
a leader in the design space.

We would have liked to validate our usability changes with more user testing but unfortunately run
out of time.

The refactoring of the code and additional documentation we wrote should also help future develop-
ment to be more efficient and effective.

5.2 Future Work
The application is not finished and still has improvement potential. In this chapter we discuss what
could be further implemented.

5.2.1 Icons
Issue: Apache License 2.0 and incorrect use of icons.

Throughout the CEEX web app icons are used. These Icons aid usability as they can communicate
meaning either on their own or in combination with a label. Icons also benefit of being understood
globally without having to be translated or changed for certain languages or regions, everybody
knows that a cog wheel icon means will lead to a settings page.

 29

The material theme by Google which was used for the CEEX web app offers many icons that can be
used under the Apache License 2.0. This however means that due to the following clause: "You must
give any other recipients of the Work or Derivative Works a copy of this License" the license must
be publicly accessible somewhere on the website.

The Icons were also incorrectly added to the web app in the prototype development. The SVG files
were downloaded and added to the Angular project under the assets folder and then imported into the
application as if they were a custom icon. This however is not necessary as the Angular material
theme supports these icons out of the box22.

Figure 37 Correct way of using material icons font.

This could be changed in the future as using the material icons the correct way keeps the website
lighter as there are no potentially unused assets being loaded.

Additionally, to adapt the colors of the icons they were manually changed using image processing
software. This led to their being duplicate icons just with different colors and the icons not being
customizable using CSS styles. By using the icons, the intended way this could be fixed. However,
there are some custom icons for the trading strategies, ideally these should also be changed so that
they can be recolored using CSS styles.

5.2.2 Addresses
Issue: Unverified textual addresses without geolocation.

In the current implementation a user’s address is just entered as text and stored in the same way. This
will in the future not be enough as it is important that the addresses are real as a lot of features of
CEEX rely on this. To ensure the entered address is real the Google Map API23 could be used. This
would also enable CEEX to get the geolocation (longitude and latitude) of the address, which is in
the end the essential part, essential because the distance to other users is used to determine the price
of energy amongst other things.

A user should also be able to change his address if he moves house. However, this could be abused
to get better energy prices therefore it may be smart to in the future verify addresses with a letter and
limit the number of times a user can change his address in a year.

22 Material Icons Font: https://www.developer.com/languages/javascript/using-material-font-icons-in-your-Angular-11-pro-

jects/ (20.01.2023)
23 Google Map API: https://developers.google.com/maps/documentation/places/web-service (20.01.2023)

https://www.developer.com/languages/javascript/using-material-font-icons-in-your-Angular-11-projects/
https://www.developer.com/languages/javascript/using-material-font-icons-in-your-Angular-11-projects/
https://developers.google.com/maps/documentation/places/web-service

 30

5.2.3 Map
Issue: Insufficient library

The trading page features a map showing the surrounding consumers/producers. The goal of this map
is to give the sense of being part of a community whilst also giving the user information on potential
consumers/producers and their prices. We were able to draw custom markers on the map to show
other users locations. However, after trying two different libraires from Google and multiple different
approaches we were not able to draw lines on the map to connect users and show the energy flow as
was initially designed. If this feature is truly relevant for CEEX then we suggest that in the future a
different map library is used rather than Google Maps. This may allow for more customization. Pos-
sible libraries could be Leaflet24 or OpenLayers25.

5.2.4 Internationalization
Issue: Italian is missing.

Italian is one of the key languages in Switzerland and we feel like it would be advantageous to add
the translation as well.

5.2.5 HSLU Data
Issue: Using fake data API instead of HSLU data.

As we have already mentioned the HSLU API has not been implemented yet. Therefore, once it has
been implemented our fake data API should be replaced with the business logics’ API.

5.2.6 Registration
Issue: Unverified information is being used.

Currently, when a user registers an account with CEEX, there is a predetermined list of distribution

service providers. However, this list is not in sync with all the providers in Switzerland. The customer

ID that is entered is also not verified whether it belongs to the selected provider and belongs to a

person with the same name and address. Additionally, CEEX could gain more information from the

user during the registration process such as their usage and cost to double check this information with

the estimates provided by the provider.

24 Leaflet: https://leafletjs.com/ (20.01.2023)
25 OpenLayers: https://openlayers.org/ (20.01.2023)

https://leafletjs.com/
https://openlayers.org/

 31

6 Reflection

6.1 Teamwork

6.1.1 Internally
The biggest hurdle internally was the difference of the time zones, since we had different work hours
and different exam/school schedules. We solved this by dividing the work in a way that we were
mostly independent from each other.

There was also a developer from FHNW involved, which in the start was still included in the devel-
opment but since we had no clearly defined requirements while refactoring the code base, it was
difficult to delegate tasks.

6.1.2 Externally
Through this project we experienced what it means to work with external teams and trying to com-
municate with them. We also had some quite heavy dependencies on some parties, as we will discuss
later.

Marketing
At the start, we learned that there was a marketing team from HSLU also working on CEEX and we
decided to try to initiate an exchange, since they had a more direct connection to potential customers
of CEEX. We sent them a document, in which we asked if they could evaluate our solutions with the
users, but we got a negative response, since making user tests was not feasible for them. Afterwards
there was no further interaction.

Customer
The communication with the customer was done through Slack and some meetings, that were sched-
uled mostly spontaneous when something was hard to explain in writing or if something larger had
to be discussed. This was very different than what we hoped to at the project, as we thought of con-
tinuing working with an agile approach as we did in Ip4. Instead of a meeting at the end of a sprint,
we had way shorter feedback loop which in turn also meant, that we had to answer more quickly.
In the end, we think that the customer was well informed, and it was also more realistic to how de-
velopment work was done in a company.

Algorithm Team
The interaction with the algorithm team, meaning Remo Kälin, was the most critical and important
part of our project. Since we will be consuming data from his server, we had to be sure to have all the
details correctly defined. This meant that we created an API document, which clearly defined on how
we expect to call the Backend and what kind of response we expect. This meant that we had to work
with a black box scenario, since we had no info on how exactly the data was stored on his side.
Also, we had a critical dependency, since we needed his server to be available to consume the data
that we had to display. Unfortunately, this dependency resulted in us having no data until the end of
the project and we had to create a service ourselves, that creates some displayable data for us.

6.2 Learnings
Before this project neither of us had worked with Angular or Django. However, we had both already
used Python and React with TypeScript, so we were aware of most of the ideas and concepts. We did

 32

find that Angular was less enjoyable to work with compared to the more popular and documented
framework, React, Svelte or Vue, as the libraries are held up to date and there is more documentation
on how things have or could be implemented.

We had also never worked on a project where team members were in different locations and even
time zones. At the beginning it was hard to find a system and schedule to meet up, but over time we
became more efficient and used to the process.

7 Bibliography

[1] Bruna Alves, “statista.com,” statista.com, 12 1 2023. [Online]. Available:
https://www.statista.com/statistics/1271511/switzerland-monthly-wholesale-electricity-price/.
[Accessed 20 1 2023].

[2] BFE, «Bundesrat bekräftigt vollständige Öffnung des Strommarktes,» BFE, 27 09 2019.
[Online]. Available:
https://www.admin.ch/gov/de/start/dokumentation/medienmitteilungen.msg-id-76564.html.
[Zugriff am 19 1 2023].

[3] R. Lüthy, "Figshare," 19 1 2023. [Online]. Available:
https://figshare.com/articles/book/API_Structure_Final_pdf/21923286. [Accessed 19 1 2023].

[4] Adobe, “Adobe,” Adobe Experience Cloud Blog, 21 6 2018. [Online]. Available:
https://business.adobe.com/blog/basics/8-ways-to-make-your-website-more-user-friendly.
[Accessed 20 01 2023].

Declaration of Authenticity

 34

Declaration of Authenticity
We the undersigned declare that all material presented in this project report is our own work and written inde-
pendently only using the indicated sources. The passages taken verbatim or in content from the listed sources are
marked as a quotation or paraphrased. We declare that all statements and information contained herein are true, cor-
rect and accurate to the best of our knowledge and belief. This report or part of it have not been published to date. It
has thus not been made available to other interested parties or examination boards.

Windisch, 20.01.2023

Name: George Gruffydd Rowlands

Signature:

Name: Raphael Lüthy

Signature:

Raphael Lüthy

Raphael Lüthy

Appendix

 36

A Current State of UI

Login:

Register:

 37

Trading:

Dashboard:

 38

Profile:

 39

B Initial State of UI
Login:

Register:

 40

Trading:

Dashboard:

 41

Profile:

	List of Figures
	Glossary
	1 Introduction
	1.1 What is CEEX?
	1.2 What are the goals of this project?
	1.3 What was achieved with this project?
	1.3.1 Deployed Dynamic Web Application
	1.3.2 Enhance UI Look and Feel

	1.4 Structure of This Document

	2 Initial State
	2.1 P1: Hard Coded Components and Values
	2.2 P2: Containerization and Pipeline
	2.3 P3: Server
	2.4 P4: Architecture
	2.5 P5: Usability
	2.6 P6: CSS Styling
	2.7 List of the problems
	2.8 Goals
	2.8.1 Goal 1: Make the website available and usable
	2.8.2 Goal 2: Make the website comprehensive and user-friendly

	3 Solution
	3.1 Dynamic Functionality
	3.2 Data API Agreement
	3.3 Fake Data API
	3.4 Proxy
	3.4.1

	3.5 Codebase
	3.6 Deployment
	3.7 Refactoring
	3.8 Libraries
	3.9 Usability
	3.9.1 Internationalization
	3.9.2 Tooltips
	3.9.3 Dialog Windows
	3.9.4 Design

	3.10 Results

	4 Project Management
	4.1 Work packages
	4.1.1 WP1: Analysis work
	4.1.2 WP2: Project Management
	4.1.3 WP3: Prototyping
	4.1.4 WP4: Software Development
	4.1.5 WP5: Validation
	4.1.6 WP6: IP5 Report
	4.1.7 Overall Time Plan

	4.2 Development strategy
	4.3 Requirements Engineering and Validation

	5 Conclusion and Future Work
	5.1 What has been achieved?
	5.1.1 Publicly Available and Interactive Website
	5.1.2 More Comprehensive User Experience

	5.2 Future Work
	5.2.1 Icons
	5.2.2 Addresses
	5.2.3 Map
	5.2.4 Internationalization
	5.2.5 HSLU Data
	5.2.6 Registration

	6 Reflection
	6.1 Teamwork
	6.1.1 Internally
	6.1.2 Externally

	6.2 Learnings

	7 Bibliography
	Declaration of Authenticity
	Appendix
	A Current State of UI
	B Initial State of UI

