
Bridging the Gap
Comparing Text Retrieval Systems for B2B Trading

Computer Science Bachelor Thesis

Windisch, March 2024

Students George Rowlands
Raphael Lüthy

Client Nitish Patkar

Supervisors Norbert Seyff
Nitish Patkar

Project Number 23HS IIT36

Fachhochschule Nordwestschweiz, Hochschule für Technik

Abstract

Through our analysis and observations, it is evident that B2B trading platforms have not kept up with re-
cent trends in searching. They require users to use precise keywords in their searches to yield satisfactory
results rather than allowing them to use natural language, thus hindering the identification of potential
business partners. Furthermore, these platforms offer minimal consulting or support for finalizing trading
transactions once a suitable partner is identified; opening up a potential gap in the market.

We aim to bridge this gap by laying the foundations for a platform that facilitates international business
collaboration. Focusing on implementing and comparing different approaches to searching with three
information retrieval systems: PostgreSQL Full Text Search, semantic search and Elasticsearch. These
three information retrieval systems leverage a unique dataset synthetically generated by GPT-4 to facil-
itate the search of companies, the products they have to offer, and the needs they want to have fulfilled.
Using a test dataset of queries and expected results, we meticulously evaluate each system, analyzing
factors such as latency, search accuracy and a unique approach that assesses the overall relevance of re-
sults using Large Language Models (LLMs) as judges. In our work, we find that whilst semantic search
has great potential with its capabilities of understanding a query’s contextual meaning, without enhanc-
ing it with additional techniques, it can not outperform the current industry standard search solution,
Elasticsearch.

Keywords:

B2B Trading, Information Retrieval, Large Language Models, Text Embeddings, Microservice Platform

iii

Acknowledgements

We would like to express our sincere gratitude to Prof. Dr. Norbert Seyff and Dr. Nitish Patkar for
their invaluable professional support throughout our entire thesis. Their guidance and expertise were
instrumental in shaping this research and ensuring its quality.

We are also grateful to Dr. Fernando Benites and Claudio Paonessa. They not only validated our ap-
proaches but also assisted us with their expertise on natural language processing subjects, which signifi-
cantly improved the strength and direction of our research.

We extend our thanks to Jacqueline Rowlands for her meticulous proofreading, which helped us ensure
the clarity and accuracy of our work.

Finally, we would like to express our deepest appreciation to all the participants who took part in our
survey. Their valuable feedback provided essential data and helped us evaluate the effectiveness of our
search approaches.

iv CONTENTS

Contents

1 Introduction 1

1.1 The Gap in the Market . 1

1.2 Our Bridge . 2

2 Principles of Information Retrieval 4

3 State of the Art 6

3.1 B2B Trading Platforms . 6

3.2 Text Embeddings . 9

3.3 Information Retrieval . 11

4 Our Approaches to Searching 13

4.1 PostgreSQL Full Text Search . 13

4.2 Semantic Search with pgvector . 14

4.3 Elasticsearch . 14

5 Our Dataset 15

5.1 Existing Datasets . 15

5.2 Scraping Data from other Platforms . 15

5.3 Creating our own Dataset . 16

5.3.1 Prompting Chain . 18

5.3.2 Data Analysis . 19

5.3.3 Data Enhancements . 19

6 Conceptual Solution 20

6.1 Data Models . 20

6.2 Frameworks and Programming Languages . 21

6.3 Monolith vs Microservice Architecture . 23

6.4 User Interface Design . 26

7 Solution 28

7.1 Frontend . 28

7.1.1 Login Page . 28

7.1.2 Search Page . 29

7.1.3 Multi-Language Support . 30

CONTENTS v

7.2 Backend . 31

7.3 Implementation of our Search Approaches . 32

7.3.1 Changing between Systems . 32

7.3.2 PostgreSQL Full Text Search . 34

7.3.3 Semantic Search . 35

7.3.4 Elasticsearch . 40

7.4 Code Testing . 42

7.4.1 Linting . 42

7.4.2 Frontend . 42

7.4.3 Microservices . 43

8 Evaluation 45

8.1 Latency Evaluation . 45

8.1.1 PostgreSQL FTS . 47

8.1.2 Semantic Search with HNSW Index . 48

8.1.3 Semantic Search without HNSW Index . 49

8.1.4 Elasticsearch . 50

8.1.5 Findings . 51

8.2 Human Evaluation . 52

8.2.1 Participants . 54

8.2.2 Comparison of Search Results . 56

8.2.3 Comparison with other Search Tools . 57

8.2.4 Findings . 58

8.3 Automated Evaluation . 59

8.3.1 Test Dataset . 59

8.3.2 Metrics . 59

8.4 Human Queries vs LLM Queries . 62

8.4.1 LLMs as Judges . 63

8.4.2 Findings . 65

8.5 Impact of Data Quality . 66

8.5.1 Findings . 66

vi CONTENTS

9 Conclusion and Future Work 67

9.1 Conclusion . 67

9.2 Learnings . 68

9.3 Future Work . 69

9.3.1 Matchmaking . 69

9.3.2 Reranker . 69

9.3.3 Query Transformations . 70

9.3.4 Hybrid Search . 70

9.3.5 Usability & Trustworthiness . 70

9.3.6 Production . 71

Declaration of Honesty 72

References 73

List of Figures 78

List of Tables 80

List of Listings 81

A Prompts Appendix 82

B Onboarding Wireframes Appendix 84

C Survey Appendix 87

Glossary vii

Glossary

API An Application Programming Interface (API) is a defined communication protocol that allows other
software applications to interact with the API system. This term is most often used to refer to the
backends of web applications.

CRUD CRUD stands for the Create, Read, Update and Delete operations. It is a common acronym used
when discussing operations on persistent storage.

CSS Cascading Style Sheets (CSS) is a programming language for applying styles to web pages. It
controls how web elements are displayed, including font, color, spacing, layout and animations.

Docker Docker is a tool for developers to package applications with all their dependencies into a stan-
dardized unit called a “container”. These containers can then be easily deployed and run on any
system with Docker installed, ensuring consistent performance and behaviour regardless of the
environment.

DoS Denial of Service attacks (DoS) are a method of attacking systems by creating a large artificial
amount of requests. The goal of these attacks is to either slow down the system or to take it offline
completely.

gRPC gRPC is a modern open-source high-performance Remote Procedure Call (RPC) framework that
can run in any environment. It can efficiently connect services in and across data centers with plug-
gable support for load balancing, tracing, health checking and authentication. It is also applicable
in the last mile of distributed computing to connect devices, mobile applications, and browsers to
backend services.

IR Information Retrieval (IR) refers to the process of searching for specific information from a large
collection of data, often referred to as “documents”. This process forms the basis of most search
engine operations.

IRS Information Retrieval Systems (IRS) are systems that solve the task of searching for documents
based on a search query using IR.

JSON JavaScript Object Notation (JSON) is a lightweight and human-readable format for storing data.
It consists of key-value pairs and has the ability to display basic data structures like arrays and
objects.

lexeme A lexeme is a term that has been “normalized” so that different forms of the same word can be
treated equally. This normalization typically includes transforming upper-case letters to lower-case
and often involves removing suffixes, such as “s” or “es”.

LLM Large Language Models (LLMs) are neural networks that have been trained on large corpuses
of text data. This allows them to understand natural language and generate human-like text in
response to a wide range of prompts.

NLP Natural Language Processing (NLP) is a subfield of computer science and focuses on the interac-
tion between human language and computers.

OAuth OAuth is a system that allows users to grant access to their accounts on one site (like Facebook
or Google) to another application, without sharing their passwords. This keeps user data secure
and simplifies login processes.

protobuf Protocol Buffers (Protobuf) is a method of serializing structured data. It is used to develop
programs that communicate with each other over a wire or for storing data. In this project, we use
it together with gRPC.

REST Representational State Transfer (REST), is an architectural style for designing APIs. This stan-
dardized approach makes them easy to develop, understand, and use across different applications
and platforms.

stub A stub is a generated adapter for gRPC, which is generated from the protobuf file to be used in
applications.

viii Glossary

Swagger Swagger is a suite of tools built around the OpenAPI Specification, used for designing, docu-
menting, and interacting with APIs.

SwitchEngines SwitchEngines is a service offered by SWITCH, a Swiss research and education net-
work, that provides on-demand virtual machines with computing and storage power for research
and education purposes.

tsquery The tsquery type represents a text search query in the form of a sorted list of distinct lexemes.
tsvector The tsvector type represents a document in a form-optimized for text search. It is a sorted

list of distinct lexemes.
UI User interface (UI) refers to the buttons, menus, and other elements on a computer or device with

which users interact.
Vector Vectors are used in many fields, including computer science and mathematics. Depending on

their use case, they can represent a list of numbers or a point in a multidimensional space.

1

1 Introduction

In this thesis, we describe the development of a platform that has the potential to improve business-to-
business (B2B) trading. This platform not only aims to connect businesses but also uses cutting-edge
search capabilities to unlock hidden trading opportunities. Specifically, we focus on developing and
comparing three different approaches to searching, as this is the key to exploring a trading platform and
identifying trade partners.

1.1 The Gap in the Market

Two elements need to be considered: The market for B2B trade itself and the gap within that market.

In recent years, India has emerged as a market with substantial growth prospects. Notably, it has wit-
nessed the first Indian IT company to achieve a market capitalization exceeding $100 billion with Infosys
[1]. India has the largest population globally, offering a vast array of skills and a large pool of potential
buyers and sellers [2]. Furthermore, the Indian government actively supports the growth of B2B trading
through initiatives such as the Open Network for Digital Commerce (ONDC) 1 and the Open Credit
Enablement Network (OCEN).2 These initiatives aim to streamline B2B transactions and foster a secure
environment for businesses to develop.

Switzerland’s strengths lie in its political and economic stability. Even after the collapse and takeover
of its second-biggest bank, Credit Suisse, by UBS, the economy remains stable [3]. Switzerland boasts
a long-standing reputation for quality and reliability. This is further solidified by its proven track record
in innovation [4], evident in its global leadership across various sectors like pharmaceuticals, medical
technology, finance, and engineering [5]. A vibrant startup ecosystem, fostered by theory-oriented insti-
tutions like the Eidgenössische Technische Hochschule Zürich (ETH) and practice-oriented institutions
like the Fachhochschule Nordwestschweiz (FHNW), cultivates a diverse but balanced and skilled work-
force that, coupled with a strong emphasis on research and development, ensures Switzerland’s continued
position at the forefront of innovation.

These two countries strongly complement each other, offering exciting possibilities for international
B2B trading, particularly in the IT, engineering, and manufacturing sectors. However, the potential is not
limited to this specific pairing of countries. Similar opportunities exist for other countries with significant
growth prospects.

In March 2024, Switzerland and the other members of the European Free Trade Association (EFTA)
agreed to a free trade deal with India after 16 years of negotiations [6]. This agreement is estimated to be
worth 88.5 billion CHF and creates a golden opportunity for our trading platform to be the first to bridge
the market gap between these two powerhouses.

Over the last few years, the way we search for information on applications like Google has undergone
significant changes. Initially, keywords were matched between the search and result texts. However, this
evolved to include more advanced techniques such as sub-string and token-based searching, graph-based
and machine-learning-based solutions, and most recently, vector-based semantic search. These more
recent developments can be accredited to the popularity and advancements of artificial intelligence, par-
ticularly in the field of natural language processing [7]. Especially with the release of the transformer
architecture [8], there has been a significant increase in research and open-sourcing of artificial intel-
ligence models. Semantic search has profited the most from these advancements as it is based on text
embeddings [9]. Research into popular large language models (LLMs) [10] and the foundational trans-
former architecture progresses in tandem with advancements in embedding models. This is because
embedding models act as the initial processing step for input data within the transformer architecture.

1https://ondc.org/
2https://ocen.dev/

https://ondc.org/
https://ocen.dev/

2 1 INTRODUCTION

After analyzing other platforms for B2B trading, we found that they have not kept up with the recent
trends in searching. Most platforms do not offer accurate search results for natural language queries and
only offer exploration at the company level, not the product level. This means that users can only search
for companies; they can not search for products directly. This results in users having to manually go a
step further after identifying a promising company to explore their products and does not allow users to
easily compare the different companies and products. Most platforms also do not have any automatic
matchmaking capabilities, such as recommendations for companies to find suitable business partners
based on their search history. Furthermore, within the platforms, there is no possibility of directly hiring
a consultant to finalize a trading agreement when the companies have found a suitable product to buy or
sell. Instead, they leave the daunting challenge of navigating the complicated regulations and laws of the
relevant countries to the companies.

Hence, Richard Elsasser, a business student at FHNW, wrote a management summary as part of his
bachelor thesis [11] in the spring semester of 2023 under the supervision of Professor Pieter Perrett to
analyse the necessity for a platform that facilitates international business collaboration. The thesis aimed
to discuss the potential challenges associated with B2B trading and the opportunities for such a platform.
The management summary concluded that there is a potential market for such a platform. We have
therefore chosen to explore this conclusion in our work here and look into the development of such a
platform.

1.2 Our Bridge

We aim to lay the foundations for a platform for international B2B trading to bridge the gap in the market
mentioned above. Understanding that efficient and insightful exploration is the lifeblood of a successful
B2B trading platform, we embark on a comprehensive evaluation to compare and contrast the technical
and perceived differences between search results provided by three distinct search solutions with the aim
to find the best fit for our B2B trading platform. The three search solutions we evaluate and compare are
as follows:

• Our baseline is PostgreSQL’s built-in Full Text Search.3

• Semantic search using the highly efficient and accurate embedding model,
all-MiniLM-L6-v2 4 and the pgvector extension 5 for PostgreSQL.

• The current industry standard, Elasticsearch.6

In addition to these three search solutions, we build a user interface which is independent of the under-
lying search solution and allows users to have a first impression of the new platform. This user interface
encompasses basic user management, offers multi-language support and showcases our search capabili-
ties for potential future users or investors.

We form the basis of our research work around the following two key research questions:

Question 1: How does our platform compare to similar platforms?

In order to answer this research question, the following three sub-questions must be answered:

• RQ1.1 What features can aid a user during exploration?
• RQ1.2 How do B2B trading platforms’ search features compare?
• RQ1.3 How do users perceive the search results of our platform compared to those of similar

platforms?

3https://www.postgresql.org/docs/current/textsearch.html
4https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2
5https://github.com/pgvector/pgvector
6https://www.elastic.co/enterprise-search

 https://www.postgresql.org/docs/current/textsearch.html
https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2
https://github.com/pgvector/pgvector
https://www.elastic.co/enterprise-search

1.2 Our Bridge 3

Question 2: How do different Information Retrieval Systems (IRS) for exploring companies and
their products compare?

To answer this question, we define and answer the following three sub-questions:

• RQ2.1 Which of our implemented IRS provides the most relevant results when exploring compa-
nies and their products?

• RQ2.2 How do the response times of the various IRS compare?
• RQ2.3 How do the different IRS behave when subjected to diverse qualities of data?

In summary, our contributions are:

• Comparisons of different information retrieval systems for the business case of exploring compa-
nies and products.

• The initial groundwork for the platform, including the architectural design, user authentication and
authorization, a multi-language user interface for exploration and a setup for end-to-end microser-
vices testing.

• A new synthetic dataset containing companies, products and needs.
• The dataset also includes a test dataset for evaluation containing pairs of queries and expected

results. The queries are a combination of synthetically generated and manually written queries
from a given product or company description. Combining manually created and synthetic queries
leverages the strengths of each approach. Synthetic queries offer scalability and efficiency, while
manually created queries capture genuine user behaviour and search patterns.

• A novel way to evaluate the relevance of a search result for a given query using large language
models as judges. These models are particularly well-suited for this task due to their deep under-
standing of language and being highly efficient and cost-effective compared to human evaluation.

Our work is structured as follows: We first provide context on information retrieval (section 2) and
the three approaches we will explore to provide the platform with relevant search results (section 4).
Then, we review the current state of B2B trading platforms and state-of-the-art information retrieval
systems (section 3). Following this, the focus will be on our own work, detailing the data used in the
platform and how we generated it (section 5). We discuss and explain our proposed solution, including
the platform’s architecture and why we chose specific frameworks (section 6). The heart of our work then
lies in implementing and evaluating our search solutions (section 7 and 8). Here, we meticulously assess
various aspects of each information retrieval system, including latency, accuracy and overall relevance
of results. Finally, we reflect on the work we carried out and present possible future work (section 9).

4 2 PRINCIPLES OF INFORMATION RETRIEVAL

2 Principles of Information Retrieval

The aim of this section is to discuss general concepts and techniques of information retrieval and how
they relate to our work.

Information retrieval systems are structured frameworks for locating and accessing relevant informa-
tion within a collection of data. They employ various techniques to match user queries with document
representations based on content and relevance.

Some examples of information retrieval are:

• Searching for information in a document e.g. searching for a word in a dictionary or book.
• Searching for documents themselves e.g. searching for a book in a library or a bookshop.
• Searching for the metadata that describes data e.g. searching for a book in a library by its author.

In information retrieval, search targets are abstracted to documents. Therefore, the task of retrieving
documents is commonly referred to as document retrieval. If the retrieval process only uses the textual
content within these documents, the task can be specified as text retrieval.

If the entire textual content of a document is considered, a full-text search is performed. However,
if only the metadata or a specific part of the textual content, i.e. the author or title of a document, is
considered, a metadata search is performed.

When performing a full-text search, several documents may match the search query, forming the results.
However, the user is probably only interested in the most relevant results. In this case, the results must
be ordered by their relevance to the query. This is called ranking. Ranking is the critical difference
between information retrieval and retrieving results from a database. Compared to information retrieval,
database searching only returns the objects that match the query in an arbitrary order, without any rank-
ing. Figure 2.1 below shows the components of information retrieval and their interactions to build a
system.

Figure 2.1: An overview of how information retrieval systems work. Image source: [12]

Full-text search can be further split into two categories:

• The first category is a lexical search, which stems from the word ”lexicon,” referring to a dictio-
nary or the vocabulary of a specific language. A lexical search matches the words from a given
dictionary without considering the meaning or context behind those words. Lexical search has fur-
ther subcategories, such as keyword search that only matches the exact words in the query, fuzzy
search and wildcard search also allow for typographical errors and word variations and lastly
proximity search that instead of merely requiring the search terms to be present anywhere in the
document, emphasizes the proximity of the terms to each other.

5

• Semantic Search carries out a search in a way that a lexical search can not. Using text embeddings
generated by a neural network, the retrieval system can understand the context and meaning of the
text. This allows for the search to be much more flexible e.g. a search for “canine” will produce
results that do not contain the word “canine” but can include the word “dog”, as the two words
have the same meaning.

To efficiently retrieve information, indexes are essential to an information retrieval system. An index
is a data structure optimized for efficiently finding the relevant search results for a given query. These
indexes are especially important when dealing with a large number of documents. With a small number
of documents, it may not be necessary to use an index at all. Instead, the informational retrieval systems
can directly scan the contents of the documents with each query. This strategy is called serial scanning.

The trading platform we develop in this thesis allows for the exploration of three different categories.
Firstly, the companies themselves. Secondly, a company’s products, that do not necessarily have to be
physical products but can also be services such as the provision of consulting. And lastly, a company’s
needs, which is where a company can describe what it is are looking for e.g. a business partner, an
investor or a specific product that fulfils certain criteria. We abstract the last two categories, products
and needs, into listings for simplicity. Our platform describes companies and listings by a name and a
description. We store additional details like location, industry, and contact information, but these are not
used in searches. However, they could, in the future, be considered as filters for the search.

Therefore, in the context of our work, the task of exploring and searching for companies and listings can
be defined as a full-text search. The query is the user’s intent, and the filters are the constraints the user
wants to apply to the search results.

6 3 STATE OF THE ART

3 State of the Art

This section explores and discusses existing B2B trading platforms, text embeddings and their wide usage
in state-of-the-art solutions. Lastly, the current state of information retrieval research and applications
is reviewed. Understanding these cutting-edge advancements is crucial for developing an effective B2B
trading platform that can meet the evolving needs of businesses in today’s digital landscape.

3.1 B2B Trading Platforms

We analyse the search features of five of the largest B2B trading platforms: alibaba.com,7 crunch-
base.com,8 clutch.co,9 upcity.com 10 and wlw.de.11

The aim of this analysis is to find answers to research question RQ1.1 of which features may be relevant
and beneficial to searching by comparing the current state-of-the-art B2B trading platforms. We also aim
to compare these B2B trading platforms and their search features for our research question RQ1.2 and
to identify potential feature gaps within these B2B trading platforms that our platform can bridge in the
future.

To analyse and compare the five B2B trading platforms, we visited each website manually and verified
whether these platforms provided certain search features. We define four search features which we want
to assess by means of a question for each. After defining each search feature, we summarize our findings
and comparisons between the B2B trading platforms in Table 3.1 below.

Contextual Search
“Is it possible to search using detailed descriptions and natural language instead of just keywords?”
The contextual search feature is helpful for users who have an idea of what they want to search for and
can describe their needs but do not know the relevant keywords. This forces the information retrieval
system to understand the context of the search query rather than focus on keywords. We verified this
feature by searching on the platforms with a description of a product instead of the product name itself.
We deemed the feature unavailable if the search did not return the described product or something similar
to what we know exists on the platform. An example of such a search is illustrated in Figure 3.1 below.

Figure 3.1: Example of the contextual search check on https://www.alibaba.com/, accessed:
19.03.2024

7https://www.alibaba.com/
8https://www.crunchbase.com/
9https://clutch.co/

10https://upcity.com/
11https://www.wlw.de/en/

https://www.alibaba.com/
https://www.alibaba.com/
https://www.crunchbase.com/
https://clutch.co/
https://upcity.com/
https://www.wlw.de/en/

3.1 B2B Trading Platforms 7

Result Type
“What type of search results are available to the user?”
Depending on the use case, users may prefer to search directly for products to purchase before contact-
ing a company. In other cases, they may want to search directly for companies with which to partner
and collaborate. Additionally, searching more granularly allows users to compare different results and
potentially save time and money. We verify this feature by observing the possible different result types.
We differentiate between the types “Product”, which means that the product is the prominent part of the
search and “Company”, which means that the searches resulted in companies or other means of contact.
In Figure 3.2 below, we show an example.

Figure 3.2: Example of a search on https://www.crunchbase.com/ with the results of type “com-
pany”, accessed: 19.03.2024

Search Suggestions
“Does the platform provide search suggestions and autocomplete in its search?”
Search suggestions and autocomplete can not only speed up the searching process but also help users
identify the most appropriate search terms and provide insight into whether the results are available or
not. We verified this feature using partial searches or searches with typos and observed how the search bar
reacted. We deemed this search feature unavailable if the search did not make any recommendations or
attempts to complete or correct the search. Figure 3.3 below, illustrates an example of search suggestions.

Figure 3.3: Example of search suggestions and auto-completion on https://www.clutch.co/, ac-
cessed: 19.03.2024

https://www.crunchbase.com/
https://www.clutch.co/

8 3 STATE OF THE ART

Multilingual
“Is the platform available in multiple languages?”
For international trading, translations of the user interface can support users who are not fluent in the
website’s primary language. This search feature can dramatically improve usability and make a platform
more approachable to new users. We verified this by searching for a button or option that allowed us to
change the website’s language. Figure 3.4 below, shows such an option.

Figure 3.4: Example of an option to change the language on https://www.wlw.de/, accessed:
19.03.2024

.

Company Contextual Search Result Type Search Suggestions Multilingual
alibaba.com X PRODUCT

clutch.co X COMPANY X
crunchbase.com X COMPANY X

upcity.com X COMPANY X X
wlw.de X COMPANY

Table 3.1: Feature comparison of five of the current B2B trading platforms.

Our comparison of the five B2B trading platforms, as shown in Table 3.1 above, reveals some limitations
in the current state-of-the-art trading platforms. Contextual search, a developing technology, is absent
across all platforms. This is likely due to these platforms having been established several years ago and
not updating their searches. Furthermore, most platforms prioritize companies as search results, with the
exception of alibaba.com, which focuses on products. None of the five platforms offered both types of
search results. Search suggestions, automatic search completion and multilingual support remain limited,
with only three out of five platforms offering these features. These findings highlight the gap within these
B2B trading platforms.

We also compare the current state-of-the-art B2B trading platforms to other search tools with the aim
of identifying additional search features that could assist users when searching and thus answer research
question RQ1.1 [13][14]. We find that if B2B trading platforms could bridge these feature gaps and
support other state-of-the-art search features, such as the below, they could dramatically improve their
user experience and search accuracy:

• Highlight keywords or suggest corrections for typographical errors in their searches e.g. Google.12

• Maintain a search history such e.g. Youtube.13

• Offer filter suggestions based on query intent e.g. Ricardo.14

• Prioritize best-selling and relevant products e.g. Amazon.15

12https://www.google.com/
13https://www.youtube.com/
14https://www.ricardo.ch/
15https://www.amazon.com/

https://www.wlw.de/
https://www.google.com/
https://www.youtube.com/
https://www.ricardo.ch/
https://www.amazon.com/

3.2 Text Embeddings 9

3.2 Text Embeddings

Text embeddings are essential to capturing the meaning of a word or sentence and can elevate searching
to the next level. Text embeddings are vectors of a specific dimension generated by embedding models.
These embedding models, for example Word2vec [15], are neural networks that have been pre-trained
on a massive corpus of text and are able to capture the meaning of a word within a language. This
capability allows the models to understand the nuances of human language, such as synonyms and subtle
differences in meaning depending on the surrounding words.

These pre-trained models capture the meaning of a word by placing the generated text embeddings close
within a defined vector space. For example, the embeddings for “engine” and “motor” would likely be
closer than “engine” and “dog” due to their closer relation in meaning. This characteristic of proximity
also results in the ability to use these vectors arithmetically. By performing arithmetic operations between
text embeddings such as addition or subtraction, semantic relationships can be explored and words with
similar meanings found, even if they have not been explicitly mentioned together before. This is a
powerful tool for tasks such as finding synonyms and antonyms.

More advanced models, which are also the current state-of-the-art for text embeddings, known as sen-
tence transformers [16], leverage the power of pre-trained models like BERT (Bidirectional Encoder
Representations from Transformers) [17] to generate text embeddings over entire sentences or para-
graphs not just single words, as shown below in Figure 3.5. These text embeddings are a fundamental
building block of large language models [10] like ChatGPT 16 and allow them to understand the relation-
ships between words and capture not only the meaning of individual words but also the relationships and
context within a text. This understanding allows them to perform complex tasks such as text generation,
translation [18], and question-answering [19].

Figure 3.5: Visualization of text embeddings from a sentence transformer in a vector space.
Image source: [20]

16https://chat.openai.com/

https://chat.openai.com/

10 3 STATE OF THE ART

By capturing the meaning and relationships within sentences, sentence transformers unlock a new level
of text understanding and enable a wide range of powerful applications such as the following:

• Semantic Search: Rather than just searching for keywords, a semantic search [9] allows for a more
reliable and widespread search due to an understanding of the relationships between words and their
context in a sentence. This allows for the underlying meaning of user queries to be represented and
improves retrieval of relevant results, making semantic search essential for our platform. Figure 3.6
below, shows how text embeddings are used to build a semantic search. Recent advancements with
models like Retrieval-Augmented Generation (RAG) [21] further enhance semantic search by using
text embeddings to identify relevant passages within a document from a private knowledge base
and then leveraging a large language model (LLM) to generate a fact-based response without being
prone to inventing information, also referred to hallucinating [22] and having to perform expensive
fine-tuning of LLMs.

• Text Similarity: The generated text embeddings of a sentence transformer can effectively be used
to measure the similarity between texts. This capability is invaluable for tasks such as plagiarism
detection [23], where the goal is to identify content that is too similar to existing sources i.e. by
comparing the embeddings of a document to a database of known sources, potential instances of
plagiarism can be identified. However, the significance of text embeddings extends far beyond
plagiarism. Their ability to quantify semantic similarity unlocks a range of applications, including
recommender systems [24] that suggest similar items to users based on their past interactions.

• Multi-Modal Learning: Embeddings bridge the gap between text and other data types such as im-
ages or videos by placing their embeddings in a common vector space. This opens doors to exciting
applications in multi-modal learning, where models can process and understand different modal-
ities together; for instance, image captioning [25], where a model generates a textual description
of an image based on its content. Similarly, text embeddings can be used in text-to-image [26] or
text-to-video generation [27], where textual descriptions are transformed into corresponding visual
representations.

Figure 3.6: Visualization of how semantic search works to find relevant results. Image source: [28]

3.3 Information Retrieval 11

3.3 Information Retrieval

The primary objective of information retrieval (IR) is to locate and retrieve information relevant to a
user’s query. Apart from our use case of finding companies and listings, many other use cases can match
this task, most of which we interact with daily. For example, current state-of-the-art information retrieval
systems are the backbone of search engines [29], the e-commerce landscape [30], and recommendation
systems [31], as both IR and recommendations rely on breaking down text into a representation that
allows for comparison. Even for researchers to write about state-of-the-art work, as here, we use infor-
mation retrieval systems to find relevant studies for our area of interest such as Semantic Scholar.17

Early information retrieval systems focused on lexical searches, such as keyword searching, where
queries and documents were compared based on shared terms. This approach improved with techniques
like lemmatization, which reduces words to their base or root form - lexemes - and allows for different
word variations such as “running” and “run” to be treated equally. However, these methods struggle with
synonyms, polysemy (“bat” as animal or baseball equipment), and context.

Google revolutionized searching the internet with graph-based approaches. Their PageRank algorithm
[32], for instance, ranks webpages based on the quality and quantity of incoming links. This innovation
was further enhanced by Google’s Knowledge Graph [33], a massive database of entities and their rela-
tionships. When processing a search query, Google can leverage the Knowledge Graph to understand the
context of the search query and identify related entities, leading to more relevant results.

The state-of-the-art in information retrieval has shifted towards semantic search [34]. This technique
allows systems to move beyond simple keyword searching by capturing the meaning behind the words.
This enables information retrieval systems to handle synonyms, polysemy, and context, overcoming the
limitations of traditional lexical approaches. Even the advanced lexical searches using ranking metrics
like TF-IDF (Term Frequency-Inverse Document Frequency) [35] or BM25 [36] struggle to compete
with the power of semantic search. TF-IDF, as shown below in Figure 3.7, assigns weights to terms
based on how often they appear in a document (term frequency) and how rare they are in the document
corpus (inverse document frequency).

Figure 3.7: Where q is the query term, d is the document, D is all documents in the corpus, f(q, d) returns
the number of times that the term q occurs in document d and n(q,D) returns the number of documents that
the term q occurs in.

17https://www.semanticscholar.org/

https://www.semanticscholar.org/

12 3 STATE OF THE ART

On the other hand, BM25 (BM standing for “best matching”), as shown below in Figure 3.8, enhances
the TF-IDF weight by considering the document length and reducing the importance of terms that fre-
quently appear in very long documents.

Figure 3.8: Where q is the query term, d is the document, D is all documents in the corpus, avgdl the
average document length in terms, f(q, d) returns the number of times that the term q occurs in document d
and n(q,D) returns the number of documents that the term q occurs in. b and k1 are free parameters, usually
chosen as b = 0.75 and k1 ∈ [1.2, 2.0].

13

4 Our Approaches to Searching

Different information retrieval systems (IRS) have different capabilities. Therefore, in this section, we
discuss why we chose these three information retrieval systems as our three approaches to searching. We
then compare these three systems on a technical level to get an incline as to which one of the three would
be best suited for our B2B trading platform. After analyzing the current state-of-the-art information
retrieval systems, we decide to evaluate and compare the following three search approaches in our work:

• PostgreSQL Full Text Search (FTS) as our baseline.
• Semantic Search with pgvector for contextual and semantical understanding of search queries.
• Elasticsearch, the current industry standard.

In Table 4.1 below, we provide an overview of the three search approaches, where we analyze their
search capabilities and assess their suitability for the various technical requirements of our B2B trading
platform.

Feature PostgreSQL FTS Semantic Search ES (FREE) ES (PAID)
Keyword Search
Proximity Search X

Fuzzy Search X
Semantic Search X X

Advanced Ranking X
Easy Setup LIMITED X X

Scalability (Large Datasets) LIMITED LIMITED

Table 4.1: Comparison of our three selected information retrieval systems. ES is the abbreviation for Elastic-
search.

The choice of approach depends on the user’s specific needs. If a basic keyword search is sufficient,
PostgreSQL FTS is very reliable. For more advanced features such as proximity search, fuzzy search,
and semantic search, pgvector or Elasticsearch are better options. The tradeoff between these systems is
the ease of setup and maintainability versus the option to scale horizontally for large datasets. Below, we
further discuss the internal workings of these three search approaches.

4.1 PostgreSQL Full Text Search

PostgreSQL Full Text Search (FTS) is often chosen due to its ease of use and straightforward setup,
making it ideal for adding basic search functionality to applications. It is especially popular as it is well-
documented [37] and built into all PostgreSQL databases. However, PostgreSQL FTS has its limitations.
It struggles with handling typographical errors and variations in word forms, e.g. “machinery” vs “ma-
chine”. As the length of text increases, the accuracy of search results can decrease. This is because
individual keywords (lexemes) become less meaningful in isolation as the length of text grows. Addi-
tionally, PostgreSQL FTS relies on indexes that become very expensive to compute with large datasets,
limiting its scalability capabilities [38].

14 4 OUR APPROACHES TO SEARCHING

4.2 Semantic Search with pgvector

Pgvector is an extension for PostgreSQL that enables the storage of high-dimensional vectors and fa-
cilitates semantic search. It relies on an embedding model, such as a sentence transformer, to generate
the document and query text embeddings. These embeddings are high-dimensional vectors representing
the underlying information. While pgvector enables the storage of these vectors, it can not do so for an
arbitrary vector dimension. If vectors have more than 2’000 dimensions, then the storage is no longer
possible.18 For semantic search, pgvector adds three new operators for the corresponding distance func-
tions used to calculate the similarity of the query and the document vectors. The pgvector extension
supports the following distance functions:

• Cosine distance
• Euclidean (L2) distance
• Inner or dot product

4.3 Elasticsearch

Elasticsearch is considered the industry standard for document retrieval and full-text search as it is highly
scalable and offers advanced ranking algorithms. However, it is important to be aware of its limitations.
The free version has restricted features, such as not allowing semantic search. Setting up Elasticsearch
can also be complex, as it requires additional dependencies like Kibana 19 for the user interface and
Logstash 20 or pgsync 21 to ingest and synchronize data between databases. Its use of “shards”, which
split up the search indexes and distribute them across multiple servers, illustrated in Figure 4.1 below,
allows for excellent scalability with large datasets. While it provides promising search capabilities and
allows for a platform to scale, it requires significant configuration. Elasticsearch can also be very expen-
sive to run and maintain, especially when utilizing the advanced features offered in the paid version.

Figure 4.1: Visualization of how Elasticsearch creates an index and splits it into shards. Image source: [39]

18https://github.com/pgvector/pgvector?tab=readme-ov-file#what-if-i-want-to-index-
vectors-with-more-than-2000-dimensions

19https://www.elastic.co/kibana
20https://www.elastic.co/logstash
21https://pgsync.com/

https://github.com/pgvector/pgvector?tab=readme-ov-file##what-if-i-want-to-index-vectors-with-more-than-2000-dimensions
https://github.com/pgvector/pgvector?tab=readme-ov-file##what-if-i-want-to-index-vectors-with-more-than-2000-dimensions
https://www.elastic.co/kibana
https://www.elastic.co/logstash
https://pgsync.com/

15

5 Our Dataset

In this section, we discuss the data requirements for our B2B trading platform and how we acquired a
suitable dataset.

It is not possible to implement and evaluate our three approaches to searching until the platform is
populated with data. We define three key requirements that must be fulfilled by the data for our platform:

1. The data must contain natural language. For simplicity, this natural language should also only be in
English. If we wanted to support multiple languages, the search functionality would become much
more complex. However, in the future development of this platform, this might be a factor that has
to be considered, as the goal of our platform is to support international B2B trading.

2. The data should match the structure of our platform. At the minimum, our platform has companies
with names and descriptions. These companies can then offer their products or services. A com-
pany can also describe their needs or desires, which other platform users may be able to fulfil. For
simplicity, we refer to both these last parts of a company as “listings”, which also require a name
and a description. We also use the listing abstraction in our code.

3. The data should cover a wide variety of business sectors as the platform will not be limited to only
one specific business sector.

Due to our focus being mainly on the search functionality, we can not use placeholder data such as “lorem
ipsum”.22 If placeholder data were used, the search functionality would not make a lot of sense because
the search queries we use are natural language which “lorem ipsum” is not. For a demonstration of the
platform to potential investors or partners, placeholder data is also not very attractive and makes it hard
to understand the platform’s objective.

After defining the above requirements for our data, we identified three possible methods to source our
data. Each of these three methods is explained below.

5.1 Existing Datasets

There are many datasets which are widely available, Huggingface 23 & Kaggle 24 being the two largest
providers. Using a pre-existing dataset is the most common approach for research as it significantly
reduces the time and resources required for data collection, preparation and labelling whilst also allowing
for comparison with other research using the same dataset. However, these datasets can also have certain
biases. For example, one of the most commonly used datasets for image classification, ImageNet,25

has been shown to have a bias for textures in the image [40]. These biases can impact a solution’s
performance and introduce potentially harmful stereotypes if not carefully addressed [41]. One limitation
of the approach of using an existing dataset is the availability of suitable datasets. In our case, we could
not find a dataset that met the aforementioned data requirements, rendering this approach infeasible.

5.2 Scraping Data from other Platforms

Data scraping involves extracting information from websites, either manually or automatically. To au-
tomatically extract the embedded data, the website’s source code must be reverse-engineered. However,
this process can be quite difficult and tedious due to the minimization of source code to save bandwidth
while serving the website. Another hurdle is finding a website or multiple websites that provide the

22https://www.lipsum.com/
23https://huggingface.co/
24https://www.kaggle.com/
25https://www.image-net.org/

https://www.lipsum.com/
https://huggingface.co/
https://www.kaggle.com/
https://www.image-net.org/

16 5 OUR DATASET

relevant information. Due to our defined data structure of companies, products and needs, we could not
find suitable websites providing matching data.

Another aspect to consider is legality when it comes to scraping. While data mining is allowed for
information generation, sharing the contents can result in legal issues [42]. As we will be using this data
while presenting our work, we have decided not to use this method to avoid any potential legal issues.

5.3 Creating our own Dataset

Creating a dataset from scratch is another approach that usually costs a lot of time and money and is,
therefore, not usually a viable option. However, since the groundbreaking paper on transformer mod-
els [8], the landscape of natural language processing (NLP) has undergone substantial changes. With
these powerful transformer models, natural language generation has become remarkably efficient, with
applications like ChatGPT 26 or Github Copilot 27 becoming part of our daily life for many. These large
language models (LLMs) [10] excel in capturing intricate patterns and dependencies within natural lan-
guage, enabling them to produce coherent and contextually relevant text. Therefore, in order to populate
our platform with data, we decided to use the OpenAI’s GPT-4 LLM.28

Initially, we created a list of possible business sectors that our platform should cover and added a de-
scription for each sector, as can be seen in Listing 1 below.

{
"name": "Information Technology (IT) and Software Development",
"description": "This sector focuses on the development,

implementation, and management of
computer systems, software, networks,
and information services. It includes
industries like software development,
IT consulting, computer hardware
manufacturing, telecommunications, and
data analysis."

}

Listing 1: Example of a business sector and its description.

In order to create a rich but still diverse dataset, we subsequently chose to restrict ourselves to five of
these business sectors. We based our choice on those sectors that could benefit from such a platform and
on sectors that could contribute the most to the UNESCO and Sustainable Development Goals.29 The
five business sectors we ultimately defined are as follows:

• Energy and Utilities
• Financial Services
• Healthcare and Pharmaceuticals
• Information Technology (IT) and Software Development
• Manufacturing

Based on these five business sectors of interest, we built up a pipeline that generates companies and
matching listings. This pipeline was written in Python, the preferred language for working with machine
learning or deep learning algorithms. We used the instructor package 30 which is a wrapper around

26https://chat.openai.com/
27https://github.com/features/copilot
28https://platform.openai.com/docs/models/gpt-4-and-gpt-4-turbo
29https://en.unesco.org/sustainabledevelopmentgoals
30https://github.com/jxnl/instructor

https://chat.openai.com/
https://github.com/features/copilot
https://platform.openai.com/docs/models/gpt-4-and-gpt-4-turbo
https://en.unesco.org/sustainabledevelopmentgoals
https://github.com/jxnl/instructor

5.3 Creating our own Dataset 17

OpenAI’s API package.31 The Instructor allows us to constrain the large language model’s generated
text to a structured output. The structured output is defined by Pydantic 32 models, which are type-
checked Python models. Pydantic also allows for the addition of validators to a data model’s field, which
are checked during object construction. The Instructor forces the LLM to output JSON. An attempt is
then made to parse the JSON to the provided Pydantic model. If the parsing fails due to limitations or
hallucinations of the LLM, it is possible to set a number of times the Instructor should retry to generate
a valid output, as can be seen in Listing 2 below. By having structured output from the LLM, we can
ensure that our data is consistent and can be easily iterated and worked on.

from pydantic import BaseModel

class CompanyResponse(BaseModel):
name: str
description: str

...
company = client.chat.completions.create(

model="gpt-4",
temperature=0.8, # 0 = deterministic, 1 = random
response_model=CompanyResponse,
number of times to retry in case
the response doesn't match the response_model
max_retries=10,
messages=[...]

)
current_company = Company(

name=company.name,
description=company.description,
sector=current_sector

)
...

Listing 2: Generating structured output with the Instructor package and parsing it to a valid Pydantic model.

31https://github.com/openai/openai-python
32https://github.com/pydantic/pydantic

https://github.com/openai/openai-python
https://github.com/pydantic/pydantic

18 5 OUR DATASET

5.3.1 Prompting Chain

With the structured outputs generated in the method previously mentioned, we built a chain of prompts
that iteratively builds up our desired data structure, as can be seen below in Figure 5.1. Within the chain
of prompts, there are multiple different prompts. We experimented with many variations of prompts,
such as generating an entire company or listing at once, but this was very challenging for the LLM. For
each prompt in the chain, we also experimented with different formulations and common patterns that
are suggested by OpenAI 33 or the researching community has found [43]. Empirically, we concluded
that chain-of-thought prompts [44] that make the model think step by step and gradually build up the
data structure provide the best results. All prompts that we used to create our dataset can be found in
Appendix A or the corresponding Github respository.34

Figure 5.1: A simplified diagram of the prompting and generation process for a company (blue), the products
and services it offers (red) and the needs and desires it seeks (green).

33https://platform.openai.com/docs/guides/prompt-engineering/strategy-write-clear-
instructions

34https://github.com/LuciferUchiha/SMEConnectGPT

https://platform.openai.com/docs/guides/prompt-engineering/strategy-write-clear-instructions
https://platform.openai.com/docs/guides/prompt-engineering/strategy-write-clear-instructions
https://github.com/LuciferUchiha/SMEConnectGPT

5.3 Creating our own Dataset 19

5.3.2 Data Analysis

After generating our dataset, we qualitatively analysed the resulting data. Despite adjustments to the
prompts, the quality of the data for the needs of companies consistently fell short compared to that for
the companies themselves and their products. In some instances, the model even replicated the company
descriptions provided as context. Due to this quality disparity, we excluded company needs from further
evaluation, focusing on companies and products only.

We also analyzed the text embeddings of our synthetically created data. As illustrated in Figure 5.2
below, the business sectors significantly influenced the descriptions of the generated companies, products
and needs. This is evident by the tight clustering of each sector when reducing the vector’s dimensionality
from 354 to 2 using UMAP [45] and its Python package.35 The smaller density of the company need
embeddings can be interpreted as the drop in quality.

Figure 5.2: Visualization of the text embeddings after being reduced to two dimensions.

5.3.3 Data Enhancements

Later in the development process, we also decide to enhance our data using the Faker 36 package. The
Faker package provides fake but realistic data for specific fields such as an email address, country, city
etc. This package was used to add additional fields to the companies and listings such as location and
contact information and to emulate the real data the platform could be populated with in the future.

35https://github.com/lmcinnes/umap
36https://fakerjs.dev/

https://github.com/lmcinnes/umap
https://fakerjs.dev/

20 6 CONCEPTUAL SOLUTION

6 Conceptual Solution

This section outlines the platform’s conceptual design choices, laying the groundwork for its technical
details and implementation. We will present the structure of our data models, explain why we use
certain frameworks and technologies and lastly discuss the overall architecture of the platform. We
also showcase our user interface wireframes.

6.1 Data Models

Our platform comprises of the four data models shown in Figure 6.1 below: companies, listings, users,
and sectors. These models have many interconnected relationships. For example, a single company can
have multiple listings (One-to-Many) and be active in multiple sectors (Many-to-Many). Currently, the
company model has the most fields, but this may change in the future, as certain tables can be separated
and shared between multiple classes, such as contact information. The most crucial fields are the names
and descriptions of both the companies and listings because these are relevant to the information retrieval
systems to facilitate the platform’s search and exploration functionality. All data models apart from the
user were populated with our previously created dataset, as described in section 5.

Figure 6.1: Our data models.

In the overall user scenario, a user can have products and/or services they want to offer on the platform
and needs and desires they want fulfilled. To represent this separation of interest, we define needs (for
the listings a company wants) and products (for the listings a company offers). We use the is_need
field to represent this split in the data model. To handle these relationships, we use companies where
a single user is the owner but other users can also join the company. We believe this will discourage
account sharing and ensure a more secure platform while allowing users to pass on the companies to
their successors.

6.2 Frameworks and Programming Languages 21

6.2 Frameworks and Programming Languages

Choosing the right programming language for the business logic of the platform was crucial, as it can
have a long-lasting effect on the construction, performance and maintainability of the platform. Es-
pecially because primarily, students will be developing the platform. We explore, the following four
options:

• Java with Spring Boot:37 Spring Boot can be a powerful framework for implementing APIs.
However, the implementation can become very complex depending on the use case. Spring boot
relies on many other heavy dependencies, which can slow down the application. Spring Boot also
takes over a lot of implementation details for the developer, which can be very useful but can also
lead to unexpected behaviour or workarounds, which, if left undocumented, can later lead to issues
with different students working on the platform.

• Rust:38 This language has gained popularity recently and offers impressive performance and mem-
ory management. However, its complex low-level syntax, paired with a high learning curve and
ever-evolving library, was deemed too challenging for a student-oriented development environ-
ment.

• Functional Programming Languages (Elixir,39 Haskell,40 OCaml 41): While these languages
are known for their speed and concurrency, learning them can be challenging as they use a dif-
ferent approach to most programming languages. This unfamiliar approach, based on functional
programming concepts, may require students to have some background knowledge they may not
have.

Ultimately, Go 42 emerged as the ideal choice due to its fulfilment of the following criteria:

• Flexibility and Performance: Go allows for polymorphic implementation, enabling a more struc-
tured project growth and adaptation while maintaining high performance thanks to its efficient
compilation.

• Learning Curve: Compared to the other three options, Go presents a significantly flatter learning
curve for students, which is crucial if there are frequent team changes.

• Simple and Transparent Code: Unlike the Spring Boot framework, which hides many implemen-
tation details, Go has a clear logic flow that prevents the hiding of implementation details.

• Error Handling: Go’s “errors as values” idiom simplifies error management, making it easier for
students to identify and handle potential issues within the code. This, together with Go’s convention
of “no fail silently,” encourages error handling, which in turn promotes secure applications.

• Concurrency and Scalability: Go inherently supports concurrency, which is crucial for an API to
handle multiple requests simultaneously. Go’s built-in concurrency features, such as lightweight
goroutines, also make it horizontally scalable.

• Memory Management: Go has an efficient Garbage Collector (GC), which frees developers from
manually allocating and freeing memory that is often forgotten and leads to memory leaks and
crashes. However, Go still allows developers to user pointers, allowing for more memory-efficient
implementations.

• Rising Popularity and Community Support: Go’s growing popularity, backed by Google as its
creator, ensures an active community for students to seek guidance and support throughout the
development process.

37https://spring.io/projects/spring-boot
38https://www.rust-lang.org/
39https://elixir-lang.org/
40https://www.haskell.org/
41https://ocaml.org/
42https://go.dev/

https://spring.io/projects/spring-boot
https://www.rust-lang.org/
https://elixir-lang.org/
https://www.haskell.org/
https://ocaml.org/
https://go.dev/

22 6 CONCEPTUAL SOLUTION

With its well-rounded feature set, Go provides the perfect balance for our project, enabling both efficient
development and a suitable learning experience.

For the user interface, we considered using backend-generated templates. However, this approach tightly
couples the user interface with the business logic, making it unsuitable as we wanted the platform to
remain flexible. We decided that to enable a highly responsive user experience during search and ex-
ploration of the platform, a framework allowing the development of a single-page application (SPA)
would be best suited. This approach prioritizes client-side processing of user interactions, significantly
enhancing perceived response times compared to server-centric architectures like templates. As the name
suggests, a SPA simulates the multi-page experience users are familiar with by dynamically manipulating
the initial page, enabling a seamless and interactive user experience.

While frameworks like Angular,43 Svelte,44 Solid,45 and Vue 46 all build SPAs and offer compelling
features, our lack of experience with these frameworks led us to choose React.47 React’s presence in
courses at FHNW and our existing experience, coupled with its extensive library ecosystem, made it
the ideal choice. We use React with TypeScript,48 a superset of JavaScript that adds optional typing to
improve code readability, maintainability and security.

Next.js 49 emerged as the clear favourite among React’s available frameworks due to its documentation,
abstractions for complex React features, rich library ecosystem, built-in caching, server-side rendering
solution and developer tooling.

For data fetching, we use React Query.50 This library provides the following benefits:

• Manages loading states: React Query exposes the ”loading” state, enabling users to receive feed-
back on what is happening within the platform.

• Supports optimistic updates: It enables optimistic updates, which temporarily reflect changes on
the client side before server confirmation, enhancing user experience.

• Reduces useEffect usage: React Query minimizes the need for the useEffect hook, a known
source of bugs in data fetching logic. This helps to improve code maintainability and reduce po-
tential errors and crashes.

Furthermore, we opted for Tailwind CSS,51 a utility-first styling framework. Tailwind CSS offers several
advantages over other frameworks to style the user interface as follows:

• Reduced bundle size: By providing small, reusable utility classes instead of extensive CSS rules,
Tailwind CSS minimizes the final CSS bundle size using a compiler that merges them at build time.

• Direct component styling: Tailwind CSS classes can be directly applied to the React components,
eliminating the need for separate CSS files and making the code more readable and maintainable.

We ultimately decided to use the shadcn/ui 52 component library for our project. Unlike other libraries,
which only provide pre-built components, shadcn/ui offers access to the complete source code of the
components, allowing for easy modification. Additionally, its use of Tailwind CSS perfectly aligns
with our chosen styling solution. Our decision to use this library resulted in an efficient user interface
development process, minimizing complex CSS work and achieving a visually appealing and consistent
user interface.

43https://angular.io/
44https://svelte.dev/
45https://solidjs.com/
46https://vuejs.org/
47https://react.dev/
48https://www.typescriptlang.org/
49https://nextjs.org/
50https://tanstack.com/query
51https://tailwindcss.com/
52https://ui.shadcn.com/

https://angular.io/
https://svelte.dev/
https://solidjs.com/
https://vuejs.org/
https://react.dev/
https://www.typescriptlang.org/
https://nextjs.org/
https://tanstack.com/query
https://tailwindcss.com/
https://ui.shadcn.com/

6.3 Monolith vs Microservice Architecture 23

6.3 Monolith vs Microservice Architecture

Choosing between a monolithic and microservice architecture is a critical decision for this project. While
both approaches have their merits, our decision hinges on fulfilling specific requirements. Our primary
concern is ensuring a fast and efficient search function using our three search approaches and allowing
the platform to scale. Additionally, the project will, in the future, involve multiple development teams,
necessitating a structure that facilitates independent work. Finally, we aim for a high degree of agility,
allowing for quick and easy code changes as needed. Considering these factors, a careful evaluation of
both architectural styles is needed. In Figure 6.2 below, we show a simplified visualization of the two
architectures.

Figure 6.2: A visualization of the difference between a monolith and microservices. Image source: [46]

The most significant advantage of monoliths is the simplified setup and lower internal latency due to the
fact that there is no additional serialization for transportation. This is because the code shares the same
memory address space. The biggest weakness of monoliths is that they can only scale vertically, e.g.
the only possibility to increase performance is to improve the server hardware or the logic within the
platform.

On the other hand, microservices allow for horizontal scaling. Each service can be independently built,
requiring only a defined communication contract. However, this separation introduces additional com-
plexity. The communication layer itself also adds complexity and potential latency. Using integration
testing, the inherent risk of coupling the different systems together can be minimized.

24 6 CONCEPTUAL SOLUTION

Below, we will provide further details as to the reasons behind our choice of the microservice architec-
ture.

Flexibility: Over time, the platform will be developed and extended by many students with different
areas of expertise and different levels of knowledge regarding programming languages, frameworks and
architectures. When future developers take over this project, they first have to understand what has pre-
viously been developed before they can work on it. However, due to the microservice architecture, they
would not need to understand the internal workings of existing services. When other students want to
extend the platform, they can develop their own microservice in their preferred programming languages
and only need to understand how to combine the different services. This results in microservices simpli-
fying the integration of different programming languages compared to a monolithic architecture. Using,
for example, Python for a new NLP service alongside existing languages could be complex in a mono-
lithic system. However, the decoupling of the services allows them to be easily exchanged, so students
can explore different technologies and solutions without any issues as long as the API stays consistent
and the contracts are fulfilled.

Scalability: In the case of this platform, each service has a different set of computational requirements
and impact on the platform. For example, the search functionality is expensive to compute and essential
to the platform. Therefore, the platform could benefit from having multiple instances of the search
services available. This can also be achieved dynamically by using auto-scaling, where instances are
started and stopped as the platform load increases and decreases, as shown in Figure 6.3 below. This is
only possible due to the composability of microservices. With a monolith, we would have to scale the
whole system, as it is not possible to only scale certain parts of it. Automatic scaling can also help to cut
costs and reduce energy consumption by only using resources when required.

Figure 6.3: How auto-scaling works in a simplified way. Image source: [47]

6.3 Monolith vs Microservice Architecture 25

Independence: The platform can be split into the following independent services that each fulfil a
different part in our separation of concerns:

• The User Management Service (UMS) manages the users and provides the authentication layer.
• The Company / Listing Management Service (CLMS) manages the companies and the listings.

It also hosts the implementation of the information retrieval systems.
• The Embedding Service (ES) generates the embeddings i.e. latent vectors for the semantic search.

Although splitting the CLMS into separate services for companies, listings, and sectors was an option, we
chose to keep it as a single service. This is because the data models are closely interconnected. Separating
them would create more complexity and latency and add possible sources of errors by introducing an
additional communication layer.

Due to the similar natures of some services, a further grouping of our services can be established:

• The controller layer consists solely of the backend, which accepts the incoming traffic and acts as
the controller to the outside for the microservices and then routes these requests to the next layer.

• The application layer is where the business logic of our platform is located. The layer receives the
requests from the controller layer and processes them depending on the specific service e.g. UMS
or CLMS.

• The data layer contains all services related to the data storage and processing, e.g. the Postgres
database, the Elasticsearch (which also serves as a database) and the embedding service responsible
for creating the vectors used for the semantic search. We use different parts of the data layer for
each information retrieval system.

Figure 6.4 below shows an overview of the platform and these layers. The data flow of the platform is
also visible and it also illustrates that neither the front- nor the backend has any direct connection to the
database, increasing data protection.

Figure 6.4: Layering of our microservices.

26 6 CONCEPTUAL SOLUTION

6.4 User Interface Design

While the ultimate goal is a polished user interface, for this initial development phase, we focus on cre-
ating wireframes for the design process. Wireframes are used because they allow the prioritization of
functionality and information architecture over visual design, which in turn facilitates a rapid iterative
design and development process. This approach also allows us to focus on the implementation of in-
formation retrieval systems’ functionalities, as we believe that the user interface primarily serves as a
visualization tool for user interaction with the underlying information retrieval systems.

Figure 6.5 below presents the wireframe for the search page. Our priorities for the search page were the
following:

• Targeted Filtering: At the top of the search page, we provide the user with three main search filters
for companies, products and needs. This allows for a more targeted search experience tailored to
specific user goals.

• Conversational Search: We positioned the search bar at the bottom of the interface. This uncon-
ventional approach draws inspiration from chat applications like ChatGPT, where search interac-
tions often resemble conversations. We believe this is a potential future direction for searching,
where a more natural, question-and-answer style is likely to become the norm.

• Streamlined Result Exploration: We display the search on the left side of the screen, leaving
most of the screen for a detailed view of a selected result. Within the detailed view, the user could,
in the future, then browse, moving, for example, from a product to its company and back without
affecting the search results on the left. By designing the search page this way, the need to open and
maintain multiple tabs or navigate back and forth between web pages can be eliminated. This has
the potential to drastically streamline the user experience.

Figure 6.5: Wireframe for the search page.

6.4 User Interface Design 27

In the interest of completeness, we also designed a potential onboarding process that details the steps
from registering a user account to setting up a company profile. These wireframes were not implemented
in the current phase due to their lower value and priority in comparison to the core search functionality.
However, we include them in Appendix B for the benefit of future students. In our implementation, we
provide a simple login page to add a layer of security for when the platform is deployed.

28 7 SOLUTION

7 Solution

Having established the gap in the B2B trading market and explored our choices on how to build a con-
ceptual bridge with our platform, we now focus on how we implemented our platform and integrated our
three search approaches. This section delves into the key decisions made during development and the
challenges encountered.

7.1 Frontend

Our frontend translates user actions into instructions for the business logic and presents the results to the
user in a clear and understandable way. Below, we briefly illustrate and discuss the implementation of
our platform’s user interface.

7.1.1 Login Page

The aim of the login page is to add an additional layer of security by requiring a user to be registered on
the platform. Only developers can create user accounts, preventing unauthorized access to the deployed
platform by requiring a valid username and password. This layer became especially important when our
second iteration of the embedding service utilized OpenAI’s API to generate the text embeddings for the
semantic search. This usage presented a cost concern, as each API request incurs a fee. Implementing
an authentication layer allows us to control user access and limit unnecessary API calls.

For our authentication layer, we use the Auth.js framework.53 Auth.js streamlines the authentication
process by providing out-of-the-box features like user sessions, email verification, and password hashing.
The framework also offers support for various third-party authentication providers, such as Google and
Facebook, through OAuth adapters.54 Using OAuth adapters, we could eliminate the need to create and
remember separate usernames and passwords that are easily forgotten. We also increase security when
introducing an OAuth adapter as most providers support two-factor authentication (2FA) and because
OAuth reduces the risk of users’ passwords being stolen. Even if a security breach occurs, attackers
would not have access to the users’ main account credentials. Using an OAuth provider also reduces the
development and platform complexity with regard to account management, as the responsibility lies with
the provider.

53https://authjs.dev/
54https://oauth.net/2/

https://authjs.dev/
https://oauth.net/2/

7.1 Frontend 29

7.1.2 Search Page

In Figure 7.1 below, our implementation of the search page is illustrated, matching our previously de-
signed wireframe and ideas in subsection 6.4. The consistent design is clearly visible thanks to the
shadcn/ui component library.

Figure 7.1: The user interface for the search page. At the top are the category filters; at the bottom, the search
bar; on the left are the search results and in the center are the details of the selected search result. The globe
in the top right corner is used to set the language.

30 7 SOLUTION

7.1.3 Multi-Language Support

The platform is intended to be used internationally, and therefore, we lay the groundwork for multi-
language support. To incorporate multi-language support, we use the next-intl framework.55 The frame-
work requires some initial configuration, such as setting the default language. However, after the setup,
we can define for each supported language a dedicated JSON file, as shown in Listing 3 below. This
JSON is then provided to next-intl by placing it in the translations folder. Currently, the platform sup-
ports English and German, but expansion is straightforward by adding a new JSON file for each addi-
tional language.

The user’s browser preference sets the initial language. If nothing is set, then our defined default lan-
guage, English, is used. The user can then override the language using the dropdown menu that is
present in the top-right corner of the application, as shown in Figure 7.1 above. The selected language
not only changes the text but also has an effect on the website’s URL. For example, a user viewing
the platform in English would see the URL [base_url]/en/search, while a German user would
see [base_url]/de/search. Here, the [base_url] represents the main platform domain (e.g.,
“mycompany.com”), and en and de represent the language codes for English and German, respectively.

{
"Login": {

"title": "Sign in to your account",
"usernamePlaceholder": "Username",
"passwordPlaceholder": "Password",
"signInButton": "Sign in",
"forgotPassword": "Forgot your password?",
"register": "Register"

},
}

Listing 3: Start of the english.json translation file.

To set translations based on the user’s chosen language within the code, the useTranslations hook
from next-intl is used as shown in Listing 4 below.

import { useTranslations } from "next-intl";
...
const t = useTranslations("Login");
...
<h2 className="text-center text-3xl font-extrabold text-gray-900">

{t("title")}
</h2>

Listing 4: Example of the translation hook used for the login page title.

55https://next-intl-docs.vercel.app/

https://next-intl-docs.vercel.app/

7.2 Backend 31

7.2 Backend

As mentioned in subsection 6.3, the backend is the only part of the business logic that is exposed to the
internet. This means all interactions from the frontend go through the backend and are authenticated
using the User Management Service, which is currently an email and password. If the user is authorized,
then the backend delegates the request to the respective microservices to be processed. The backend is
a REST API that was built using the Gin framework.56 The API can be explored using the generated
Swagger 57 documentation, as depicted in Figure 7.2 below.

Figure 7.2: Generated Swagger Documentation.

56https://gin-gonic.com/
57https://swagger.io/

https://gin-gonic.com/
https://swagger.io/

32 7 SOLUTION

7.3 Implementation of our Search Approaches

This section discusses how we implemented the three different information retrieval systems (IRS) men-
tioned in section 4. As the platform has to be able to change between the three information retrieval
systems, we also explain how this was accomplished.

7.3.1 Changing between Systems

The key functionality for the platform and the focus of our work is the ability to search and explore the
platform and find relevant companies and listings to a user’s query. Our implementation has to fulfil
the requirement of being able to change between each of the three information retrieval systems (IRS)
without having any noticeable changes to the user apart from the searching capability. This requirement
is important to evaluate and compare the three different IRS without any external dependencies.

To use multiple information retrieval systems, we must build a consistent but flexible API, which is why
we rely on interfaces for consistency. For each service, we define an interface for the functionality that
it exposes to the gRPC layer. These interfaces, such as in Listing 5 below, serve as a contract that the
different implementations of the three IRS implementations need to fulfil.

type ListingDatabaseInterface interface {
CreateListing(listing *models.DatabaseListing)

(*models.DatabaseListing, error)
GetListing(id int64)

(*models.DatabaseListing, error)
// shortened ...

}

Listing 5: Extract of an interface for listing service

Figure 7.3 below provides a basic overview of how the interface and its implementations are connected.

Figure 7.3: Diagram of the interface architecture for the part of the company and listing management service
(CLMS).

7.3 Implementation of our Search Approaches 33

To differentiate between our three search approaches, we use the environment variable IRS_MODE. In-
ternally, the IRS_MODE is then mapped and implemented to an enumeration. In the service, we can then
change the implementation of the defined interface based on the IRS configuration, i.e. IRS_MODE.
This can also be called the “strategy pattern”.58 The strategy pattern, first defined in the book “Design
Patterns: Elements of Reusable Object-Oriented Software” [48], is a design pattern in object-oriented
programming that fosters flexibility and maintainability by decoupling the selection of specific algo-
rithm from their usage. This approach achieves separation of concerns by separating the “what” (the
functionality) from the “how” (the implementation). In Listing 6 below, we illustrate this pattern.

func GetListingDatabaseInstance() *ListingDatabaseImplementation {
IrsMode := utils.GoDotEnvVariable("IRS_MODE")
if IrsMode == string(types.BASELINE) {

listingInstance = &ListingDatabaseImplementation{
databaseConnector: &baseline.
ListingDatabaseBaseline{},

}
return

} else if ...
// check for other options

})
return listingInstance

}

Listing 6: Initialization of the specific IRS implementation.

58https://refactoring.guru/design-patterns/strategy

https://refactoring.guru/design-patterns/strategy

34 7 SOLUTION

7.3.2 PostgreSQL Full Text Search

For the baseline of our work, we selected PostgreSQL Full Text Search for the reasons previously men-
tioned in section 4.

To implement full-text searching, PostgreSQL provides a parser to create the lexemes from the inserted
document; a document being a few words, a sentence, or even a whole paragraph. These lexemes are then
a normalized representation of the text. The parsing, in this case lemmatization, includes tokenization,
normalization of upper and lower case, removal of stop words and transforming words to their root form,
known as stemming.

PostgreSQL then uses this parser with the two data types tsvector and tsquery. Each document, in
the case of our platform, the companies and their listings, are parsed to a tsvector, an alphabetically
sorted list of lexemes with their position index. These tsvectors are then stored within an index that
allows for fast retrieval.

When a user performs a search, the search query goes through the same parser but is then represented
as a tsquery, which is also a list of lexemes. The tsvector and tsquery types are then used
to perform the actual search, using the @@ operator, which returns a boolean for each result. The
return value determines whether the two vectors of lexemes match (true) or not (false). PostgreSQL then
automatically orders these results using the ts_rank function, which is based on the relevance of the
search results. An example of the search for a company can be seen in Listing 7 below.

var companies []*models.DatabaseCompany
err := db.NewSelect().

Model(&companies).
ExcludeColumn("name_tokens", "embeddings", "description_tokens").
Where(`name_tokens @@ websearch_to_tsquery('english', ?)

OR description_tokens @@ websearch_to_tsquery('english', ?)`
, query, query).

Limit(limit).
Offset(page * limit).
Scan(context.Background())

if err != nil {
return nil, err

}

Listing 7: The code for searching for companies. The name tokens and description tokens are the ts vectors.

7.3 Implementation of our Search Approaches 35

7.3.3 Semantic Search

Unlike lexical search, where the information retrieval system looks for exact matches of the query words
or variants of them as mentioned in subsection 3.2, semantic search can look for matches by understand-
ing the meaning and context of a query and improve the quality of search results with the use of text
embeddings.

Generating Embeddings
For semantic search to function, the texts’ semantic and contextual similarity first needs to be captured.
This is done with an embedding model which creates text embeddings from provided texts. These texts
are the query and the document content, in our platform, the title and description of a company or
listing. The embedding model then outputs a vector of a specific dimension. Depending on the chosen
embedding model, these dimensions can vary dramatically. The output vector is also often referred to
as a latent vector because it contains all the latent features of the text. These embeddings are special as
they have one key feature. Text embeddings that are close together in the vector space also have a similar
contextual meaning. Close together, in the case of vectors, can have multiple meanings as illustrated in
the Figure 7.4 below:

• The euclidean or L2 distance between the 2 vectors is very small.
• The inner or dot product between the 2 vectors representing the projection of one vector onto

another becomes very large.
• The cosine distance representing the angle between the 2 vectors becomes very small.

Figure 7.4: Visualization of distance functions between vectors. Image source: [49]

Often, this distance between the vectors is also referred to as “confidence”, as in the task of the retrieval,
the distance can be interpreted as how confident the system is that the retrieved vector is correct. If the
text embedding is close to the query, then the system is confident that it is the correct one; if it is far
away, the system is less confident that the vector is the correct one.

In our platform, the embedding service generates the text embeddings. Initially, we identified the Go
package langchaingo,59 which allowed us to interact with embedding models hosted on Huggingface via
their API. Huggingface is the biggest platform for pre-trained models. However, we quickly encountered
issues with API rate limits. We then switched to OpenAI’s API but encountered the same issue of rate-
limiting when embedding all the companies and listings to populate the platform.

This is when our microservice architecture started to come into its own. As the two previous approaches
were unsuccessful, we decided to run an embedding model on our SwitchEngines server. However, we
had to ensure the embedding model was small enough to run with our limited resources. Python has
the largest community and support for artificial intelligence development, which led us to rebuild the
embedding service in Python. Python also has a package for communication via gRPC, so we could still
continue using gRPC rather than switching to a REST API approach. We used the sentence-transformer
package 60 to run the embedding model locally on our server. Given a specific sentence-transformer

59https://github.com/tmc/langchaingo
60https://www.sbert.net/

https://github.com/tmc/langchaingo
https://www.sbert.net/

36 7 SOLUTION

model name, the library automatically copies the pre-trained weights/parameters and then builds and
starts the model. This allows the embedding model to be easily exchanged in the future if a newer model
appears that performs better than our current embedding model or more resources become available.
At the time of our work, the best sentence-transformer for retrieval that could run on our server was
all-MiniLM-L6-v2. Listing 8 below, shows the setup of the embedding model and the generation
of a text embedding.

class EmbeddingService(embedding_pb2_grpc.EmbeddingServiceServicer):

def __init__(self):
EMBEDDING_MODEL_NAME = os.getenv("EMBEDDING_MODEL_NAME")
if not EMBEDDING_MODEL_NAME:

raise EnvironmentError("EMBEDDING_MODEL_NAME
environment variable is not set.")

load the model
self.model = SentenceTransformer(EMBEDDING_MODEL_NAME)

def CreateSMEEmbedding(self, request, context):
with torch.no_grad():

generate the text embedding
embedding = self.model.encode(request.content)

return embedding_pb2.CreateEmbeddingResponse(embedding=embedding)

Listing 8: The EmbeddingService without the communication layer.

We can then take all of our companies and listings, create text embeddings for each one, and store them
in a database specialized for vectors. When a user sends a search query, this query is also embedded and
a nearest neighbour search is performed of the query vector and the stored company and listing vectors.
This process is the retrieval stage, as the nearest neighbours of the query are retrieved from the vector
database. In our case, we retrieve the 10 nearest neighbours. However, this can be adapted to retrieving
any number of nearest neighbours or only retrieving the neighbours within a certain threshold to our
query vector. If the euclidean distance is being used to compare vectors, this threshold can be interpreted
as retrieving all the neighbours in a certain radius. These retrieved neighbours are the search results for
a given query.

7.3 Implementation of our Search Approaches 37

pgvector
For the storage of the text embeddings and nearest neighbour search, we use pgvector, an open-source
extension for PostgreSQL databases. With the help of this plugin, we can store vectors and compare
them using the three different distance functions mentioned in subsection 4.2.

When conducting a search, the vector of the database entry and the vector of the search query need to
be compared. The parameters for a search are defined with an interface for each service, as shown in
Listing 9 below.

type GetListingsResultsBySearchRequest struct {
Query string
Page int32
Limit int32

}

Listing 9: The interface defining the search parameters for the listing service in the company and listing
management service (CLMS).

In Listing 10 below, the process of performing a search is illustrated. The searchVector, is the
search query after it has been embedded by the embedding service. The searchVector is then used
in combination with the cosine distance to perform the search. We use the cosine distance to compare
vectors because the embedding models were trained with the cosine distance as part of their loss [50].

// for pgvector there are multiple ways to do the search
// 1. using the "<=>" operator, which does cosine distance
// 2. using the "<->" operator, which does euclidean distance
// 3. using the "<#>" operator, which does inner or dot product
err = db.NewSelect().Model(&listings).

Column("id", "name", "description", "is_need", "company_id").
Where("is_need = ?", isNeed).
OrderExpr("embeddings <=> ?", searchVector).
Limit(limit).
Offset(page * limit).
Scan(context.Background())

Listing 10: Database query for the vector nearest neighbour search using pgvector.

38 7 SOLUTION

HNSW Index
By default, pgvector performs exact nearest neighbor searches, this provides more accurate results than
approximate nearest neighbour algorithms at the cost of efficiency. To increase the efficiency of our
platform, we use the HNSW index. The abbreviation HNSW stands for Hierarchical Navigable Small
World. It is based on the skip list data structure 61 and is used for approximate nearest neighbour
searches. The algorithm generates a layered graph. The layers shown in Figure 7.5 allow for faster
traversal time, as the graph can now be traversed in three dimensions instead of only two, resulting in
faster retrieval of the nearest neighbours [51]. However, because it uses approximate nearest neighbours,
there is a slight loss in relevance.

Figure 7.5: Diagram of layered graph traversal. Image source: [51].

61https://en.wikipedia.org/wiki/Skip_list

https://en.wikipedia.org/wiki/Skip_list

7.3 Implementation of our Search Approaches 39

To implement the HNSW index in the company and listing management service (CLMS), we define a
function that runs after the database table is instantiated, as illustrated in Listing 11 below.

func (p*DatabaseListing) AfterCreateTable(ctx context.Context,
query *bun.CreateTableQuery) error {

_, err := query.DB().NewCreateIndex().
Model((*DatabaseListing)(nil)).
Index("listings_embeddings_idx").
ColumnExpr("embeddings vector_l2_ops").
Using("hnsw").
Exec(ctx)

Listing 11: How to configure pgvector to use the HNSW index.

If the searchable range needs to be expanded, fields can be added to the content string that is embedded
during insert and update, as already carried out with the names and descriptions as shown in Listing 12
below.

embedding, err := client.CreateSMEEmbedding(context.Background(),
&proto.CreateEmbeddingRequest{
Content: listing.Name + " " + listing.Description,

})
if err != nil || embedding.Embedding == nil {

errMsg :=
fmt.Errorf("CLMS: Error while calling Embedding Service: %v", err)

fmt.Println(errMsg)
return nil, errMsg

}

Listing 12: Example of how the name and description of a listing are merged before creating the text embed-
ding.

40 7 SOLUTION

7.3.4 Elasticsearch

The last search approach that we integrate into our platform is Elasticsearch. The Elasticsearch setup uses
the Docker 62 images provided by the maintainers of the Elasticsearch project. Since a graphical interface
is needed to validate the queries and visualize the results, we also deploy Elasticsearch’s recommended
graphical interface, Kibana 63 to the server.

Since Elasticsearch is not the source of truth of our data, we needed an approach to synchronize the data
from our PostgreSQL database to the Elasticsearch server efficiently. The solution recommended by
Elasticsearch to this problem is Logstash 64, also a product of the maintainers of Elasticsearch. However,
the configuration complexity associated with deploying Logstash as an additional service resulted in us
choosing a different approach. Instead, we implemented Debezium,65 a dedicated Postgres change data
capture (CDC) tool, to efficiently capture and emit database modifications/changelogs. These modifi-
cations are then processed by PGSync, another service responsible for indexing them within the Elas-
ticsearch search engine. Figure 7.6 illustrates how the data is synchronized between our PostgreSQL
database and Elasticsearch.

Figure 7.6: Basic Architecture of the sync between the Postgres database and Elasticsearch.

62https://www.docker.com/
63https://www.elastic.co/kibana
64https://www.elastic.co/logstash
65https://debezium.io/

https://www.docker.com/
https://www.elastic.co/kibana
https://www.elastic.co/logstash
https://debezium.io/

7.3 Implementation of our Search Approaches 41

To configure the data synchronization, we need to create a schema utilized by PGSync to map the data be-
tween PostgreSQL and Elasticsearch. The schema is defined in the JSON 66 format utilizing a dedicated
file and adheres to the structure in Listing 13 below.

[{
"database": "smeconnect",
"index": "smeconnect_listings",
"nodes": {
"table": "listings",
"columns":

["id", "name", "description", "company_id", "is_need"]
}

}]

Listing 13: PGSync schema for synchronizing PostgreSQL to Elasticsearch.

First, we define the database that we want to sync from, smeconnect. Then we define the index that
we want to sync to, the index smeconnect listings. Lastly, we define the table that we want to
sync from and what columns will be included in the Elasticsearch index, e.g. the table listings and
the columns id, name, description, company id and is need.

When a search request arrives, the company and listing management service (CLMS) acts as a “middle-
man”, forwarding the request to Elasticsearch as an HTTP request. Elasticsearch then, just like Post-
greSQL FTS, has an index that is used to perform the search and returns all entries that have a match.
It then ranks and orders these results using BM25 and returns the results to the CLMS as JSON. The
CLMS must fetch the results from the Postgres database if additional information is needed. This allows
for Elasticsearch’s index to be as small as possible and keeps the PostgreSQL database as the single
source of truth.

66https://www.json.org/json-en.html

https://www.json.org/json-en.html

42 7 SOLUTION

7.4 Code Testing

In this section, we demonstrate our commitment to quality by outlining our code testing process.

7.4.1 Linting

Keeping our code clean and consistent is crucial for development and meeting business standards. Auto-
mated tools called linters help us achieve this by checking our code against predefined rules. These rules
can be set by the linter provider itself or customized by developers. Linters are specifically chosen for
different parts of our codebase. For the TypeScript frontend, we use Next.js’s built-in linter. For the Go
backend and microservices, we leverage a Go linter. To prioritize developer efficiency, enable frequent
committing of code and avoid hindering the local development process, we employ GitHub Actions 67

that run on our SwitchEngines server to execute these checks. This enables us to ensure that all pull
requests into the development or main branch fully conform to our rules.

7.4.2 Frontend

There are two approaches to testing a single-page application such as our frontend. The first approach
is that the different user inputs are faked using a headless browser framework like Puppeteer 68 or Play-
wright.69 These solutions initiate a headless browser window, which means that the user interface is not
rendered. Then, tests are performed on the HTML and Javascript code that the website returns. This
approach enables developers to simulate keyboard and mouse input and verify if the resulting website
output corresponds to the provided user interactions.

The other approach involves unit testing of React components. This method utilizes a testing framework
to render the component with predefined data and subsequently compares the resulting output with the
anticipated outcome established by the developer. One prominent library facilitating the implementation
of such tests is the React Testing Library.70

However, the frontend of our platform is still a prototype, primarily serving as a platform for demonstra-
tion purposes. Consequently, we opted to prioritize development speed and delay the implementation
of comprehensive testing frameworks. Additionally, the reliance on pre-built components from a com-
ponent library that has been battle-tested by thousands of users further incentivizes this decision, as we
anticipate substantial changes to the frontend in the subsequent project phases. This approach prioritizes
easy and fast iteration and responsiveness to evolving requirements in the early stages, while we still
recognize that a more rigorous setup is needed later.

67https://docs.github.com/en/actions
68https://pptr.dev/
69https://playwright.dev/
70https://testing-library.com/

https://docs.github.com/en/actions
https://pptr.dev/
https://playwright.dev/
https://testing-library.com/

7.4 Code Testing 43

7.4.3 Microservices

To ensure the correctness and robustness of the implemented business logic and a solid integration of
the different parts, multiple approaches can be chosen: unit testing, divided into black- and white-box
testing,71 and integration testing.

Unit testing requires a large amount of mocking. Mocking utilizes simulated substitutes (mocks) for
external dependencies that the code under test interacts with. This isolates the unit, allowing focused
testing of its internal logic and facilitating control over the external dependency behaviour (normal op-
erations, errors, etc.). We decided against this approach as the platform does not perform any complex
processing or calculations. External dependencies such as PostgreSQL and Elasticsearch take over all
of the complex functionality. Since the project mostly involves integrating the different systems, we
decided to perform integration testing.

In contrast to unit testing, which examines the functionality of individual code units in isolation, inte-
gration testing focuses on verifying how these units work together as a whole. It combines and tests
the interaction between several software components, like modules or services. Integration tests specifi-
cally target the communication layers to identify potential issues at these crucial interfaces. For instance,
they might verify the correct data flow between different modules or guarantee effective communication
between various services involved in a system.

Figure 7.7: Overview of the End-To-End Testing setup.

To perform the tests, we initiate an instance of the whole application, except for the frontend. In this
system, we then start an additional helper server that acts as the frontend, as shown in Figure 7.7 above.
Using this helper, queries are performed on the backend’s REST API to verify expected results for correct
and false input. The helper is written using Typescript and runs with the Bun runtime,72 a lightweight,
almost drop-in replacement for Node.js.73 Although some features still need to be implemented in Bun, it
covers our use case well and reduces the time and computing resources required to run the tests compared
to NodeJS. To compare the results, we use Bun’s integrated test framework.74

71Thread on the subject on StackOverflow: https://stackoverflow.com/a/9893055/12544632
72https://bun.sh/
73https://nodejs.org/en
74https://bun.sh/docs/test/writing

https://stackoverflow.com/a/9893055/12544632
https://bun.sh/
https://nodejs.org/en
https://bun.sh/docs/test/writing

44 7 SOLUTION

The tests are separated into the domains of the data models they act on, e.g. users, listings, companies
and sectors. For each domain, we test all the CRUD functions as well as their special constraints, such
as ensuring only the specific user can delete his own account. In Listing 14 below, we show such a test.

If a more granular permission system is implemented, the test setup can easily be extended to test those
use cases.

test("company can be created", async () => {
// define initial data
const body = {
name: "Some Company",
description:
"Some Company is a multinational technology company...",

sector_ids: [3, 4],
owner_id: 1,
// shortened ...

};

// submit the new data to the backend
const res = await axios.post(`${backendUrl}/companies`,

JSON.stringify(body),
options

});

// check whether created input was
// reflected in the newly created database entry
expect(res.status).toBe(200);
expect(res.data.company.name).toBe(body.name);
expect(res.data.company.description).toBe(body.description);
// shortened ...

});

Listing 14: Example of a test case to test the creation of a company. The test data is anonymised for publica-
tion purposes.

The testing process is conducted through Github Actions using the runner that is configured on our
SwitchEngines server. We already use these runners to check the code for formatting or conventional
errors and ensure that our docker containers start smoothly. As the test results are closely integrated in
Github, we can utilize the test results to prevent the merging of changes into our main branch if the tests
fail.

Since the docker containers of our platform need time to start up, we defined two methods of ensuring
that the testing container will not fail due to our platform not being ready as follows:

1. Each container has a script running that checks if the other containers have started up and are
“listening” on their specific ports.

2. We wait an additional time to make sure all the synchronization work can be finished before we per-
form any operations, as it is crucial to allow the data layer enough time to start up and synchronize
the data.

After running the tests, the Github Actions remove any files generated to ensure a fresh setup for the next
test run.

45

8 Evaluation

In this section, we evaluate the three search approaches we implemented in the previous section 7. First,
we measure the response time of each search system and compare them. Human evaluators will then
assess the relevance of the retrieved results of each search approach in the form of a survey. Finally, an
automated evaluation of the search results will be conducted to compare the systems with well-known
metrics and a novel approach to finding the overall relevancy of results by using a large language model
(LLM) as a judge. It is important to note that the data used for our platform is synthetically generated,
which may influence the overall results of our evaluation. The evaluation data and the analysis can be
found in the respective Github repository.75

8.1 Latency Evaluation

We evaluate and compare the response times of our search approaches to answer research question RQ2.2
with latency tests. This involves running each microservice within Docker containers specifically de-
signed for the project.76 Since production-ready containers are not yet available, we use development
containers. To ensure consistent results, all tests ran on a Macbook Pro with an M3 Pro chip and 36 GB
of RAM. We kept the device connected to power to avoid performance fluctuations caused by power-
saving features. Another reason to perform the tests in a local environment is the networking. If we were
to perform the tests with the hosted containers on our SwitchEngine server, we would spam the host’s
network. This could result in blocking our machine due to DoS protection. Additionally, the results
could be impacted by unstable network connections.

We note that the latencies of our tests may vary as we run the development containers. These containers
are emulated by the Rosetta layer since the containers were designed for linux/amd64 [52]. This
layer needs to be activated in Docker Desktop, as illustrated in Figure 8.1 below.

Figure 8.1: Screenshot of the Rosetta emulation layer option in Docker Desktop.

75https://github.com/LuciferUchiha/SMEConnectJudge/tree/main
76https://github.com/raphaelluethy/smeconnect/tree/main/docker

https://github.com/LuciferUchiha/SMEConnectJudge/tree/main
https://github.com/raphaelluethy/smeconnect/tree/main/docker

46 8 EVALUATION

For the latency tests, we use the hey 77 command line utility within a Bash script,78 shown below in
Listing 15, as it provides support for parallel requests:

#!/bin/bash
SEARCH_QUERIES=(...)
URL=''http://localhost:8081/listings/search?query=''
FLAGS_2=''$&isneed=false&page=0&limit=10''
CURRENT_DATE=$(date +''%Y-%m-%d'')
counter=0
for QUERY in ''${SEARCH_QUERIES[@]}''
do
hey -n 10000 -c 50 -m GET -o csv -H

URLQUERY$FLAGS_2 >> $CURRENT_DATE''_latency_test_results.csv''
done

Listing 15: Shortened version of the latency testing script

We select 10 human-written search queries of different lengths and complexity. For all queries, we send a
total of 10’000 GET requests from 50 concurrent agents to the /listings/search endpoint, result-
ing in a CSV output as seen in Listing 16 below. We use the response-time field for the comparison.

response-time,DNS+dialup,DNS,Request-write,
Response-delay,Response-read,status-code,offset

0.0578,0.0146,0.0010,0.0000,0.0428,0.0004,200,0.0005
0.0639,0.0145,0.0012,0.0000,0.0487,0.0007,200,0.0003
0.0689,0.0143,0.0011,0.0000,0.0542,0.0004,200,0.0005

Listing 16: CSV output example

77https://github.com/rakyll/hey
78https://www.gnu.org/software/bash/

https://github.com/rakyll/hey
https://www.gnu.org/software/bash/

8.1 Latency Evaluation 47

8.1.1 PostgreSQL FTS

Our latency tests for the baseline information retrieval system with PostgreSQL Full Text Search (FTS),
yielded positive results as shown below in Figure 8.2 below. The majority of the response times fall
within the very fast 5th percentile, registering at only 0.01 seconds. The overall average response time
is also low, at 0.15 seconds. However, the system struggles with frequently occurring generic keywords
like “machine learning,” “trading algorithms,” and “cancer.” This is probably because the database has
many more matching documents than the other queries and requires more time to determine the most
relevant results. Overall, the latency test results align with our expectations, as the search query only
needs to be split into lexemes and then the database can perform the search directly.

Figure 8.2: Latency test of our baseline, PostgreSQL FTS.

48 8 EVALUATION

8.1.2 Semantic Search with HNSW Index

Our latency tests of the semantic search with pgvector and the HNSW index also yielded positive results,
as shown in Figure 8.3 below. The mean latency of 0.16 seconds significantly exceeded expectations,
particularly considering the anticipated overhead from calling the embedding service to generate the
text embeddings with a neural network for the search query. This suggests excellent performance from
the gRPC layer within our microservice architecture and efficiency of the sentence transformer model.
This is a good example of why the additional internal latency of a microservice system can mostly
be ignored when using gRPC for communication. The 95th percentile was also lower than expected
since we anticipated that more general queries would take longer. Overall, we are impressed with the
performance, attributing success partly to the effectiveness of the HNSW index and partly to the gRPC
layer.

Figure 8.3: Latency test of the semantic search with pgvector and the HSNW index.

8.1 Latency Evaluation 49

8.1.3 Semantic Search without HNSW Index

As shown in Figure 8.4 below, the latency tests of the semantic search with pgvector and without the
HNSW index yielded unsatisfactory results. The latencies show a tight cluster between the 5th percentile
(0.67 seconds), the mean (0.72 seconds), and the 95th percentile (0.79 seconds) response times, indi-
cating overall system stability. However, the exact nearest neighbour search significantly impacts the
latency of the platform. Also, there is a substantial difference in execution time for the query “A phone
with 256 GB storage” compared to other queries. The response times of the exact nearest neighbour are
worse than expected compared to the HNSW index. We did not expect the HNSW index to have such a
significant impact on response times.

Figure 8.4: Latency test of the semantic search with pgvector and without the HSNW index.

50 8 EVALUATION

8.1.4 Elasticsearch

Our latency tests revealed strong performance from Elasticsearch. Response times were tightly clustered,
with the 5th percentile at 0.02 seconds, the mean at 0.06 seconds, and the 95th percentile at 0.12 sec-
onds, as illustrated in Figure 8.5 below. This aligns with expectations of the industry standard searching
solution. It is important to note that only the lexical search capabilities of Elasticsearch were used. The
semantic search was not utilized because it is limited to the paid version of Elasticsearch. Consequently,
there was no latency overhead from an embedding model. Interestingly, the system exhibited exceptional
stability. This is noteworthy as no specific efforts were made to scale or implement parallelism within
the Elasticsearch setup. The overall results demonstrate a high-performing and stable search system.

Figure 8.5: Latency Evaluation for Elasticsearch.

8.1 Latency Evaluation 51

8.1.5 Findings

Metric PostgreSQL FTS SS with HNSW SS without HNSW ES
5th Percentile (s) 0.0065 0.0075 0.6723 0.0217

Mean (s) 0.1501 0.1575 0.7216 0.0594
95th Percentile (s) 0.5089 0.4777 0.7926 0.1157

Table 8.1: Latency comparison of our three search approaches. SS is the short form for Semantic Search. ES
is the short form for Elasticsearch.

In conclusion, to answer research question RQ2.2 of how the response times of the different information
retrieval systems compare, we find the following:

• Whilst Postgres Full Text Search (FTS) offers the fastest response times for the vast majority of
queries, Elasticsearch is superior regarding both average and worst-case scenarios.

• Semantic search using pgvector requires the HNSW index for acceptable performance.
• Both semantic search with HNSW and Elasticsearch provide interesting search capabilities and

maintain low latency, making them good options for our platform.
• Overall, Elasticsearch remains the industry standard due to its stability, speed, and comprehensive

feature set. However, semantic search with pgvector using the HNSW index presents a viable
alternative depending on the use case.

52 8 EVALUATION

8.2 Human Evaluation

To evaluate our three approaches to searching and find the answer to research question RQ2.1 of which
approach gives the most relevant results, we conducted A/B tests with 23 test users. We conducted the
A/B tests online using a survey. As each information retrieval system (IRS) needs to be compared to one
another, we perform three “duals”:

• A vs B
• B vs C
• A vs C

By performing these three duals, we compare each IRS to the others and can define the optimal solution.
For the survey, we prepared six queries of varying complexity. We also ensured that we had a query for
each of the five business sectors chosen when we generated the data to keep the comparisons fair and
diverse. When we defined the six queries, we decided to restrict ourselves to products and services as our
qualitative analysis of our synthetic data in subsubsection 5.3.2 showed that these were of higher quality
than needs and desires and we believe that defining search queries for products and services is much
clearer for test users then queries for companies. Since we chose to use six search queries and there are
three information retrieval systems to compare, we created two queries that each system is more suited
to. For example, semantic search prefers more natural flowing language, whereas Postgres’s full-text
search prefers keywords. We defined the following six queries:

1. “Cancer” for when a medical research company might look for suppliers of specific equipment
used in cancer research.

2. “A phone with 256 GB storage” for when an employer might be looking to bulk pur-
chase smartphones for their employees.

3. “Machine Learning” for when a company developing self-driving cars might be looking for
suppliers that specialize in machine learning software.

4. “Trading Algorithms” for when a financial institution might be looking for a company to
develop or license a trading algorithm.

5. “Sustainable energy storage” for when a company developing solar panels might be
looking for suppliers of batteries or other sustainable energy storage solutions.

6. “A gearbox for speedy cars under 1000$” for when a go-kart manufacturer
might be looking for a supplier of affordable gearboxes.

8.2 Human Evaluation 53

For each of the three search approaches and each of the six queries, we ran the queries and collected the
top 5 search results. We then created the survey with the duals described above and asked the participants
to choose which search results they found more relevant. We also allowed participants to choose an
option that both search results are equally relevant, as the results of some queries may feel very similar.
This resulted in a total of 18 duals to decide which of the implemented information retrieval systems is
the best for finding products on a B2B trading platform. An example of an A/B test for the “cancer”
query can be seen in Figure 8.6 below. A copy of the full survey can also be found in Appendix C.

Figure 8.6: An example of an A/B test for the query “cancer”. The semantic search returned the five results at the top.
PostgreSQL FTS returned the five results at the bottom.

54 8 EVALUATION

8.2.1 Participants

We used non-random sampling, specifically convenience sampling, to identify our participants for the
survey. This means we specifically targeted people known to us to have experience with B2B trading
or experience with information retrieval systems. By selecting the participants this way, we can obtain
insights from people familiar with the domain and search functionalities. However, we are aware that
there is a potential to create a bias, particularly with a more technically knowledgeable audience, which
might not reflect the knowledge of the entire user base.

We initially asked 44 people to participate in our survey. However, we also received feedback from two
participants who said they had shared the survey with others they know from the domain. Of these 44
participants, we can see in Figure 8.7 below, that 23 participants completed the survey, resulting in a
completion rate of 52%. This high rate is despite the fact that the survey took roughly 20 minutes to
complete and was only available in English. Unfortunately, some participants did not take or complete
the survey due to the language barrier. However, we could not avoid this issue because our data in the
search results is only in English.

Figure 8.7: Breakdown of the survey participants.

8.2 Human Evaluation 55

We intentionally did not collect certain demographic data due to privacy concerns, as they can be per-
ceived as intrusive and discourage participation, especially for sensitive demographics such as race, age
or ethnicity. We are more interested in the participants’ opinions of our search results. However, we did
collect data from the participants on the industry in which they are currently working and whether they
are currently or have previously been involved in B2B trading, as we believe this could give us some
valuable insights.

Of the 23 participants, 11 worked in the IT and software development industry. This was to be expected
as it is also the industry in which we know the most people. However, we also had participants from the
manufacturing, engineering and energy sectors. A detailed breakdown of the participants’ occupational
industries in Figure 8.8 is shown below. Of the 23 participants, 56.5% are currently or have previously
been involved in B2B trading. This corresponds to our expectations as we targeted people with knowl-
edge in the domains of our work.

Figure 8.8: The different business sectors of all survey participants.

At the end of the survey, we also asked the participants if they would be willing to participate in a follow-
up interview to further aid the future development of the platform. Of the 23 participants, 10 participants
would be willing to participate in a follow-up interview, which was higher than we had anticipated.
Due to time constraints, we could not conduct any interviews. However, the contact details of potential
interviewees have been retained for potential use in the future.

56 8 EVALUATION

8.2.2 Comparison of Search Results

For each of the six queries, there are three duals, as described previously. Within a dual, a participant
has to pick one of three options. They could either choose between two search results, identifying the
one they found more relevant or, if they felt that the results were equally relevant, they could choose the
third option of “both results feel equally relevant”. We can then count the number of votes/selections
each search result receives and, therefore, also the corresponding information retrieval systems.

We define three different voting schemes to ensure the scheme does not impact the results:

• Only wins: We only count the votes where a participant specifically chooses a search result.
• 2 Points for wins, 1 point for ties: If a participant specifically chooses a relevant search result,

that information retrieval system receives two votes. If the participant chooses the option of the
results being equally relevant, the two points are split equally between the two information retrieval
systems; one each.

• Football system: This scheme works in the same as the points systems in football leagues; three
points for a win, 1 point for a tie.

These votes can be summed up across all six queries to find the participants’ preference of our search
approaches and answer research question RQ2.1 of which IRS gives the most relevant results. Irrespec-
tive of the voting scheme used, the semantic search receives the most votes and is therefore the preferred
solution. Elasticsearch closely follows the semantic search, and the system with the least number of
votes is the PostgreSQL FTS.

Figure 8.9: The total vote distribution for all three information retrieval systems and voting schemes.

We note that for some of the queries, the PostgreSQL FTS did not return any results. This was also
explained to the participants in the survey. However, what is interesting to note is that for these search
results where participants had to choose between no search results or potentially inaccurate search results,
there was a difference in opinion. About half of the participants would choose the answer with no search
results, which was surprising to us. However, we believe this is likely due to human preference as some
people would rather have something they can work with, whereas others only want high-quality results.

8.2 Human Evaluation 57

8.2.3 Comparison with other Search Tools

We aimed to compare the search results generated by our three approaches with search results generated
by other typically used search tools to answer research question RQ1.3. To achieve this, we included a
question at the end of each section of the six queries asking participants if they found the search results
“better than search results from other search tools”.

However, setting up the survey this way suffered from two key limitations:

• Undefined Baseline: In the survey, we did not specify which “other search tools” participants
should consider when evaluating the results provided. This broad scope led to a wide range of
interpretations and a potentially unreliable comparison.

• Lack of Specificity: We did not define a specific search result participants should compare to. This
resulted in variable interpretations and potentially mixed responses.

Despite these limitations, we conducted a more granular analysis of some responses. For example, the
query “a phone with 256 GB storage” yielded the following results:

• PostgreSQL FTS: No results returned.
• Elasticsearch: Irrelevant results.
• Semantic Search: Highly relevant results.

This spread of results can also be seen in the participants’ feedback illustrated in Figure 8.10 below.
Negative responses most likely stemmed from the PostgreSQL FTS results. In contrast, average and
positive responses might refer to the results from Elasticsearch or semantic search, depending on the
participants’ familiarity with semantic search. However, we can see in our analysis of other B2B trading
platforms in subsection 3.1 that participants are not necessarily familiar with search tools that have
contextual understanding.

To improve future evaluations of the platform, we propose that a clear set of competitor search tools
and comparable results should be considered. We also suggest that participants be provided with sample
results from our platform and the competing tools to compare between. This allows for a more focused
and accurate comparison.

Figure 8.10: Analysis of whether participants found our search results for the query “a phone with 256 GB
storage” better than other search tools.

58 8 EVALUATION

8.2.4 Findings

After performing the survey of our three search approaches with 23 participants, we summarize our
findings and answers for our research questions RQ2.1 of which information retrieval system gives the
most relevant results and RQ1.3 on how our search results compare to other search tools below:

• We found that semantic search is the participants’ preferred information retrieval system, receiving
43.6% to 48.9% of the votes depending on the voting scheme used. This preference comes from
the capability of finding accurate search results for natural language queries such as “a phone with
256 GB storage”.

• Elasticsearch is a very close competitor to the semantic search, receiving 35.4% to 36.2% of the
votes depending on the voting scheme used. This search approach especially gains votes when
precise keywords are used whilst still being able to also gain votes for handling more complex
search queries.

• Unfortunately, PostgreSQL FTS clearly does not meet the search expectation requirements that
users have of a search platform.

• Interestingly, on our evaluation of the survey results, there was a split of opinion on whether no
results should be returned rather than inaccurate ones. This should be considered when further
developing the platform. A possible solution to this issue could be to display search recommenda-
tions, general product categories or alternative queries if no results could be found.

• Despite our survey not being set up ideally to compare our search results with those of other search
tools, we find that our results are comparable, if not better, for complex natural language queries.
We also find that, to have a fair comparison between different B2B trading platforms, a common
dataset between all platforms would be required, which poses a great challenge.

By analyzing for each of the three search approaches to which “opponent” they lost the most votes in
Table 8.2 below, we can show how close the participants’ preference of Elasticsearch and semantic search
is. With Elasticsearch losing the most votes to semantic search and both systems winning the most votes
from duals against PostgreSQL FTS.

Lost votes against PostgreSQL FTS Semantic Search Elasticsearch
PostgreSQL FTS - 22 24
Semantic Search 89 - 60

Elasticsearch 55 24 -

Table 8.2: The amount of votes that the bold search approach above lost to the search approach on the left.

8.3 Automated Evaluation 59

8.3 Automated Evaluation

To mitigate the possibility of potential bias in our survey, we incorporate automated evaluation as part
of our comparison of the approaches. This evaluation leverages established information retrieval metrics
while also using large language models (LLMs) in a novel way to assess and judge how relevant a search
result is to a given query. This not only provides valuable insights into our three search approaches but
also lays the groundwork for effortless evaluation and comparison of potential future solutions to the
current search approaches.

8.3.1 Test Dataset

To automatically evaluate each of our search approaches’ performance, we constructed a test dataset of
80 queries that combines the strengths of both human-written and AI-generated queries. This approach
offers several advantages.

First, we selected a representative random subsample of 40 companies and 40 products from our original
dataset. George Rowlands, Raphael Lüthy and Nitish Patkar then independently wrote queries based
on a company or product description for half of these samples i.e. a total of 40 queries. By having
three different people write queries, we can ensure a variety of query styles, phrasings, and complexity,
reflecting how real users might interact with the platform.

Whilst 40 human-written queries provide a solid foundation, we further expanded the test set by lever-
aging the power of OpenAI’s gpt-4-Turbo LLM to generate an additional 40 queries. This brings
a significant amount of data into the test set efficiently, allowing for a broader range of potential user
interactions and analysing the information retrieval systems’ ability to handle diverse query formats.

Importantly, for each query in the test set, we also have access to the expected result, allowing us to
measure the accuracy of each information retrieval system in retrieving the desired information.

8.3.2 Metrics

Having established a comprehensive test dataset, we now look at the specific metrics employed to eval-
uate and compare our three search approaches:

Zero result rate (ZRR): This metric indicates the number of queries for which the IRS fails to return
any results. We set each IRS to return all results that are relevant no matter by how much. Therefore,
this metric also shows the rate at which a company or product will be missed entirely for the given query.
Ideally, this metric should be zero, signifying the systems’ ability to identify at least some potential
matches for every query.

Misses: Since our system retrieves all potential results, this metric is inherently equivalent to the ZRR
multiplied by the total number of queries i.e. 80 (40 human-written and 40 synthetically generated).
However, it is important to acknowledge this metric for transparency.

Rank: This metric shows the position of the expected result within the ranked list of the search results.
A lower rank signifies a more relevant result. Ideally, all results would appear at rank 1, the first position.
To be more precise, we will focus on the mean and median rank of each search solution. The mean rank
tells us the average position of the expected result across all queries. The median rank is a metric less
influenced by outliers compared to the mean, which can be skewed by a few very high or low ranks.

60 8 EVALUATION

Hit rate at value K: The hit rate is the proportion of queries for which the expected result appears
if only value K results would be returned i.e. the rate at which the expected result is within the top K
positions of the ranked results. We calculate hit rates for various values of K e.g. 1, 3, 5, 10, 20, 50, 100.
The higher the rate, the better. Intrinsicly, if K grows, then so does the hit rate.

Mean Reciprocal Rank (MRR): This metric calculates the average reciprocal of the rank for each
query’s expected result, the reciprocal being the multiplicative inverse i.e. the reciprocal of x is 1

x . Com-
pared to the mean rank, the MRR is less sensitive to negative outliers as it prioritizes the position of the
expected result in the ranking i.e. it gives more weight to results appearing at the top compared to those
appearing lower. An MRR closer to 1 signifies a higher overall performance, indicating that the expected
results tend to appear at higher ranks on average. We also calculate the MMR@5, which means we only
calculate the MRR for the queries where the expected result was in the top five results. This gives a more
focused view of the search results, as the first five results are the most important.

We note that for the semantic search, we compared the search results using the exact nearest neighbour
search (NN) with the approximate nearest neighbour search (ANN) using the HNSW index. For our
dataset, both configurations return the exact same search results. However, this may not be true for larger
and more diverse datasets. Therefore, when comparing the semantic search with our other search ap-
proaches, we use the HNSW index as it significantly improves the response times at no cost to search
result accuracy.

IR System ZRR Misses Mean Rank Median Rank MRR MRR@5
PostgreSQL FTS 43.75% 35 2.28 1 0.39 0.41

Elasticsearch 2.5% 2 4.06 2 0.59 0.72
Semantic Search 0% 0 10.39 5 0.37 0.61

Table 8.3: Results of the automated evaluation using all 80 queries for each of the three search approaches.

Setting out the results of each metric in the Table 8.3 above enables us to draw the following conclusions:

• The PostgreSQL FTS misses a lot of results due to not returning any results if no matching key-
words are found. However, when it does find a result, then this result is highly accurate. We believe
this is due to its strong reliance on keyword searching.

• The semantic search never misses any results. However, this also leads to a lot of expected search
results having a very low rank, clearly bringing down its average performance. This can be seen
in the difference between the mean and the median rank. If we only focus on the results that have
a hit in the top 5 with the MRR@5, we can see the score drastically increases. This can also be
seen in Figure 8.11 below, with the semantic search result ranks having a wider distribution than
the other information retrieval systems.

• Elasticsearch provides a combination of both of the positives from the other two approaches. It
is very accurate and does not have a lot of misses, making it a very good search solution for the
platform.

8.3 Automated Evaluation 61

Figure 8.11: The distribution of where the expected result is found.

In Figure 8.12 below, we show how the hit rate increases with the number of returned results. We can
clearly see that PostgreSQL FTS quickly reaches its limits at 10 results. However, this could be due to
the size of our dataset. The high zero result rate (ZRR) holds PostgreSQL FTS back from breaking the
60% mark. We also see that the Elasticsearch hit rate has very consistent growth in relation to the number
of search results retrieved. The semantic search surpasses the PostgreSQL FTS if more than three search
results are considered. It also catches up to the elastic search with more results, ultimately overtaking it
due to Elasticsearch having some misses.

Figure 8.12: The hit rate gain when more search results are considered.

62 8 EVALUATION

8.4 Human Queries vs LLM Queries

We also investigate the difference between the human-written queries and the queries written by a large
language model (LLM) in our test dataset. Table 8.4 below shows that the LLM queries outperform or
are equal to the human-written queries for all approaches and metrics. This suggests that LLMs excel at
extracting key information from data and translating it into precise search queries. However, on average,
the LLM queries were ten characters (approximately two words) longer. While this increased length
might contribute to their accuracy, it also raises the question of whether these queries could be optimized
for conciseness while maintaining effectiveness.

IR System ZRR Misses Mean Rank Median Rank MRR MRR@5
PostgreSQL FTS Human 55% 22 2.61 1 0.30 0.31
PostgreSQL FTS LLM 32.5% 13 2.07 1 0.49 0.51
Elasticsearch Human 5% 2 4.82 2 0.50 0.64
Elasticsearch LLM 0% 0 3.35 1 0.68 0.80

Semantic Search Human 0% 0 12.48 5 0.35 0.60
Semantic Search LLM 0% 0 8.3 4 0.39 0.62

Table 8.4: Results of the automated evaluation split between the human-written queries and the queries the
LLM generated.

8.4 Human Queries vs LLM Queries 63

8.4.1 LLMs as Judges

In addition to the more traditional metric-based evaluation, we also introduce using large language mod-
els (LLMs) as “judges” to assess the relevance of search results. LLMs have more recently gained a
lot of popularity as judges. LLMs are uniquely suited for this task due to their ability to understand the
intricacies of natural language, context, and search intent. Our novel approach to using LLMs draws
inspiration from the concept of context relevance in Retrieval-Augmented Generation (RAG) systems.
Similar to how contextually relevant chunks in RAG systems are measured for their relevancy with the
user’s query and conversation, we propose analyzing our three search approaches’ top five search results
based on their relevance to the specific search query. To mitigate any potential biases of the LLM, we
propose that each of the top five search results be judged by the LLM three separate times. The average of
these three assessments then determines the final “LLM relevance score” for each result. The prompt we
used for “LLM relevance score” can be found in Appendix A. The distribution of these LLM relevancy
scores can be seen in Figure 8.13 below.

Figure 8.13: Violin plots showing the distribution and median of the LLM relevance score for the top five search results
of each of our search approaches, i.e. the top-ranked search results. In the centre of each violin is a boxplot, with the
black dot being the median value of the data and the box forming the interquartile range of the data. The data range and
distribution can also be interpreted from the violin’s shape (a histogram on its side). A wide area showing where data
points are more frequent.

Across all three approaches, relevancy decreases with each lower-ranked result, which is to be expected.
This shows that our three search approaches return relevant results and that our LLM relevancy score is
a valid metric for comparing information retrieval systems.

It is clearly visible that PostgreSQL FTS is very accurate and that the LLM judge is very sure about
the relevancy, especially for the first four results. However, we note that PostgreSQL FTS often returns
zero results, which are omitted from this graph. The value distributions for the semantic search and
Elasticsearch are as expected. However, it is interesting to note that Elasticsearch’s 4th and 5th search
results significantly increase the score distribution.

64 8 EVALUATION

We also analyse the standard deviation of the LLM’s relevance score to give us insights into the consis-
tency of the scores. With an average standard deviation of 0.35, meaning the scores for the same query
and result tend to differ on average by 0.35 points, we feel confident that the LLM’s assessments are
consistent and reliable. In Figure 8.14 below, we show the distribution of the standard deviation values
for the LLM relevancy scores.

Figure 8.14: A histogram of the standard deviation values of all LLM relevancy scores.

8.4 Human Queries vs LLM Queries 65

8.4.2 Findings

After conducting multiple automated evaluations and comparisons to answer our research question
RQ2.1 of which information retrieval system gives the most relevant results in a neutral and reusable
way we summarize our findings of our automated evaluation below:

• We found that search queries generated by Large Language Models (LLMs) demonstrably out-
perform their human-written counterparts in retrieving relevant information. This is a significant
finding, as it shows the potential of using LLMs to transform and augment user search queries to
improve information retrieval. However, we note that the synthetically generated queries were, on
average, 10 characters longer than the human-written queries.

• Our evaluation yielded promising results regarding the potential of using Large Language Models
(LLMs) as judges of text relevancy. Notably, LLM exhibited high consistency and agreement in
its evaluations. The average score deviation for the same question was only 0.35 on a scale from
0 to 10. Therefore, we believe that our LLM relevancy score of a result compared to its query is
interpretable and could prove useful in future work in the field of information retrieval.

• Our evaluation exposes a key weakness of PostgreSQL FTS. With a zero result rate (ZRR) of
43.75%, it misses a large amount of results, making it an unsuitable search approach for our plat-
form. This weakness is due to PostgreSQL FTS not being able to handle synonymous words in
the query that do not occur in the descriptions. However, we note that if it does return a result, the
result is very accurate, with the expected result being on average within the first 3 results.

• Elasticsearch clearly surpasses PostgreSQL FTS by addressing the previously observed weaknesses
of misses, while simultaneously maintaining a high search accuracy. This is evident by its superior
performance metrics, achieving the highest Mean Reciprocal Rank (MRR) of 0.59 and the highest
MRR@5 of 0.72. This, coupled with the low latency observed in our previous evaluation in subsec-
tion 8.1, along with Elasticsearch’s established reputation for scalability, makes it a very promising
solution for our platform.

• In our evaluation, we found that semantic search showed promise, exceeding PostgreSQL FTS in
MRR@5 but falling short of Elasticsearch’s accuracy. This is likely due to the efficient yet limited
embedding model and synthetic training data. Future work using larger embedding models like
Hugging Face’s Leaderboard’s 79 top performers could improve our semantic search substantially.
In the following section on future work, we define some additional improvements for semantic
search to improve accuracy, such as using a cross-encoder to rerank the results [53] or transform
queries using large language models [54] to take advantage of their contextual understanding and
test if the transformed human-written queries can match the performance found with synthetically
generated queries.

79https://huggingface.co/spaces/mteb/leaderboard

https://huggingface.co/spaces/mteb/leaderboard

66 8 EVALUATION

8.5 Impact of Data Quality

When choosing an information retrieval system for a platform, the nature and quality of the data and de-
sired search behaviour must be considered. Postgres Full Text Search (FTS) prioritizes keyword match-
ing, favouring shorter texts densely packed with relevant, qualitative terms. In comparison, semantic
search excels with longer natural language texts, leveraging text embeddings to account for synonyms,
typographical errors, and contextual meaning. Elasticsearch falls between these two, offering some un-
derstanding of typographical errors and word variations while emphasizing the importance and quality
of keywords within the document. The optimal choice of an information retrieval system for a platform
depends on whether to prioritize exact keyword matches in potentially shorter content, semantic under-
standing in longer texts, or a balance between the two with some tolerance for typographical errors.

8.5.1 Findings

We can conclude our findings for research question RQ2.3 that the data quality is important when choos-
ing the search’s underlying technology and, therefore, also impacts the resulting search results. This, and
the impact of the synthetically generated data, can be visualized for the semantic search after projecting
the text embeddings to two dimensions as in Figure 8.15 below. Each of the clusters is due to the business
sectors. However, we can see that the clusters are very tight. Because the clusters are so tight, the seman-
tic search can have difficulty choosing the correct result. These tight clusters can be interpreted as the
synthetically generated descriptions by the LLM being more general and using commonly used words
rather than precisely pinpointable keywords. In comparison, human-written descriptions are of higher
quality and more diverse, especially if the people writing the descriptions use techniques to optimize
their descriptions to appear more frequently in searches, so-called search engine optimization (SEO).

Figure 8.15: The cosine distance of search results to the search query is very tightly packed together, making
the choice difficult.

67

9 Conclusion and Future Work

9.1 Conclusion

In this thesis, we compared three search approaches for a B2B trading platform: PostgreSQL Full Text
Search, semantic search with pgvector and Elasticsearch. Our work mainly focused on evaluating these
three information retrieval systems for our platform and its specific use case. In addition to the compari-
son, we planned and built the foundation for the platform, from architecture design to implementing the
various microservices and information retrieval systems.

From our extensive evaluation and comparisons, we conclude our research questions as set out below:

RQ1.1: What features can aid a user during exploration?
Our analysis of five existing B2B trading platforms in subsection 3.1 and the general state-of-the-art in
searching revealed a significant gap in the B2B trading platform’s search functionality compared to the
current state-of-the-art. This highlights the potential for improved user experience and search accuracy.
Incorporating features such as multilingual support, conversational searching, search history, search rec-
ommendations, and query auto-completion can improve the user experience during exploration.

RQ1.2: How do B2B trading platforms’ search features compare?
Our comparison of the five B2B trading platforms revealed that there is a gap to be filled in search func-
tionalities, also when comparing them to the general state-of-the-art in searching. No platforms support
contextual and semantic search. While some platforms suggest searches, automatic completion and offer
multilingual support, no platform completely covers all features. By integrating keyword highlighting,
filter suggestions based on intent and covering all of the features mentioned above, a B2B trading plat-
form that surpasses those in the current market could be created.

RQ1.3: How do users perceive the search results of our platform compared to those of
similar platforms?
We demonstrated in subsubsection 8.2.3, that even though our survey was not set up optimally to compare
our search results with those of other search tools, with in-depth analysis, we can come to the conclusion
that our results are comparable to, and in some cases even better then other B2B trading platforms. Our
search approaches are especially impressive compared to other search tools when given natural language
queries. However, we concluded that to conduct a fair comparison between different B2B trading plat-
forms, a common dataset or equal examples should be used.

RQ2.1: Which of our implemented IRS gives the most relevant results when exploring
companies and their products?
Based on the findings from our survey in subsubsection 8.2.4 and the automated evaluation in subsub-
section 8.4.2, we conclude that Elasticsearch and semantic search are the most promising information
retrieval systems (IRS) for our platform. Elasticsearch excels in search accuracy and scalability whilst
still being able to handle complex queries. This makes it the ideal choice for larger datasets and a wide
range of queries. Semantic search, while demonstrating strong search accuracy after excluding outliers,
may improve even further with non-synthetic data and minor refinements such as a larger embedding
model and query transformations. It excels at long and complex natural language queries where un-
derstanding context is important. In contrast, PostgreSQL FTS, while retrieving highly relevant results,
exhibits a critical flaw in failing to return results for nearly half of the queries in the test dataset. How-
ever, is still a viable option if the searches only use simple keywords in short texts.
Therefore, we believe a hybrid approach that leverages both Elasticsearch and semantic search, or utiliz-
ing the paid version of Elasticsearch, is the most optimal solution for our B2B trading platform.

68 9 CONCLUSION AND FUTURE WORK

RQ2.2: How do the response times of the different IRS compare?
In subsubsection 8.1.5, we performed latency tests for our three search approaches. Our tests revealed
that Elasticsearch delivered the most consistent and reliable performance across all search queries. While
PostgreSQL FTS also displayed favourable response times, its performance decreased noticeably for
queries involving frequent keywords. This suggests potential limitations in PostgreSQL FTS’s scala-
bility. Furthermore, our findings strongly support the adoption of the HNSW index to enable efficient
semantic search within our platform. Searches executed without the HNSW index take, on average, al-
most five times longer.

RQ2.3: How do the different IRS behave when subjected to various qualities of company
descriptions?
We discuss in subsubsection 8.5.1 how the quality of text can impact the search accuracy of information
retrieval systems (IRS). We come to the conclusion that our approaches underperform when commonly
occurring words or very similar descriptions are being compared. If the IRS is a lexical search, it can
also struggle with synonyms as it can not understand the meanings of a word, unlike a semantic search.

We also reflected on the development process of the B2B trading platform and the integration of our
three search approaches with the following observations:

• While implementing PostgreSQL FTS and the semantic search with pgvector was relatively
straightforward, integrating these systems into the platform required significant effort.

• We were surprised that our initial approaches to using HuggingFace’s API and OpenAI’s API for
the embedding service did not work due to rate-limiting. However, in hindsight, we believe that
having a self-hosted embedding model, whilst requiring a more powerful server, is a much better
option as it can be significantly cheaper and allows for more control and flexibility over the model
itself.

• Our decision to use Go for microservices paired with gRPC proved highly effective. Go’s perfor-
mance and approachable syntax made it an excellent choice. Overall, we are very satisfied with the
chosen technology stack for the platform.

In conclusion, this thesis provides valuable insights into information retrieval systems for B2B trading
platforms by evaluating PostgreSQL Full Text Search, semantic search with pgvector, and Elasticsearch.
Our work builds the foundation for a new B2B trading platform while also providing suggestions on our
platform’s search functionalities.

9.2 Learnings

Our thesis was a valuable learning experience for us both. We delved into information retrieval, a new
area for us. Additionally, we built a platform using microservices with Go, a programming language
we specifically learned for this project. Finally, we mastered the intricacies of writing and structuring a
thesis with LaTeX, a skill that will prove beneficial to our academic future.

9.3 Future Work 69

9.3 Future Work

In the following section, we discuss future research or development that could further improve the plat-
form or our three search approaches.

9.3.1 Matchmaking

A potentially interesting feature for our B2B trading platform could be to explicitly and automatically
match companies with products or companies with other companies. These matches could be search
recommendations based on previous searches and interactions on the platform but could also explicitly
match companies’ needs to other companies’ products with the goal of creating a symbiotic relationship.

Our B2B trading platform could, in the future, be further enhanced by adding matchmaking function-
alities. This system could leverage search history and platform interactions to match companies with
listings or companies with other companies. We believe there are two possible approaches:

1. The platform could make personalized recommendations on the homepage in a similar way to
Youtube or E-Commerce websites.

2. The platform could process a company’s defined needs and match them with complementary prod-
ucts or services. This targeted matching could foster the creation of symbiotic relationships, where
both parties benefit from the matching.

9.3.2 Reranker

As noted in subsubsection 8.4.2, we believe that the search accuracy of the semantic search could be
improved with a reranker. This approach could also be used for the other two information retrieval
systems. A reranker is a machine learning model that takes the retrieved results and re-orders them based
on the relevance between the query and the result, as shown in Figure 9.1 below. This could be a large
language model (LLM), making it similar to reordering by our “LLM relevancy score” that we used in
our automated evaluation, or it could be another transformer model, such as a cross-encoder that has
been specifically trained for the task of ranking similarity of texts. This approach could significantly
improve the overall effectiveness as the reranker can understand the contextual meaning of the query and
the results in its non-condensed form, as the embedding to a vector can have information loss.

Figure 9.1: An overview of how a reranker could be added to the retrieval process. Image source: [55].

70 9 CONCLUSION AND FUTURE WORK

9.3.3 Query Transformations

There are many ways to transform and enhance queries [54]. The goal of these methods is to improve
the retrieval process by using techniques such as retrieving results using multiple phrasings of the query
or breaking down queries into smaller subqueries. For example, the query “An oil filter for the X5
transmission” could be broken down into two queries, “oil filter” and “X5 transmission”. However, most
of these techniques require an extra step or a reranker after the retrieval process to combine the results of
the transformed queries back into one accurate list of results.

9.3.4 Hybrid Search

As we have already noted in our conclusions, we believe that a hybrid approach leveraging both Elas-
ticsearch and semantic search would be a great solution as they both have their advantages and disad-
vantages. Elastic search for when queries contain many keywords and semantic search for when queries
require more contextual understanding. A hybrid search approach, such as with Reciprocal Rank Fusion
(RRF) [56], would combine the strengths of both Elasticsearch and semantic search to deliver a better
and more relevant search experience, as illustrated in Figure 9.2 below.

Figure 9.2: Illustration of a hybrid approach combining semantic search and keyword search.
Image source: [57]

9.3.5 Usability & Trustworthiness

Enhancing the user experience and improving the trustworthiness of search results are key areas for
future exploration. The following are potential avenues for further research:

• Result Validation: Currently, users have limited ways to assess the relevance of search results.
Features like keyword highlighting can help users understand why a particular document was re-
turned. This transparency can build trust in the search functionality.

• Confidence Scoring: Implementing a confidence score or percentage match can provide users with
a clearer understanding of how closely a document aligns with their query. This could also be our
“LLM relevance score”, which we used in subsubsection 8.4.2 as part of our automated evaluation.

• Query Suggestions: As users type their search queries, the system could offer suggestions for
similar or more precise terms. This can help users refine their searches and potentially discover
more relevant results.

These additions can significantly improve the search experience by empowering users to validate results,
understand their relevance, and refine their search strategies.

9.3 Future Work 71

9.3.6 Production

The current state of the project is only meant for development. There are a few steps that have to be
taken to have a production-ready platform.

Dockerfiles
The Dockerfiles currently being used to define the Docker images are not optimized for a production
environment. These Dockerfiles may not be optimized for the amount of use which could be expected
in production. We recommend waiting until the platform goes into production to make any purposeful
changes to the Dockerfiles, as the setup and the requirements may change during the next iterations of
teams working on the project.

Deployment Pipeline
The current pipeline is a manual deployment, as there was no use case to justify such a time-intensive
task of setting up an automated deployment pipeline. We note that the following improvements could be
made:

• Create a pipeline that builds the Docker images and deploys them to a container registry with a
proper version tag.

• Create a pipeline that deploys the newly generated images if all the checks have run successfully.
• Create a pipeline that notifies the developer if a check fails.
• Create a pipeline that starts a specific deployment for each merge request to be able to have a

preview of the changes in a non-local environment.

We extend our sincere gratitude to everyone who supported our work. We are confident that future
development and research will unlock the full potential of our B2B trading platform.

REFERENCES 73

References

[1] India Brand Equity Foundation. Infosys Becomes 4th Indian Company To Touch $100 bn Market
Cap. https://www.ibef.org/news/infosys-becomes-4th-indian-company-
to-touch-100-bn-market-cap. Accessed: 2024-03-16. 2024 (cit. on p. 1).

[2] Worldmeter. World Population Clock. https://www.worldometers.info/world-
population/. Accessed: 2024-03-16. 2024 (cit. on p. 1).

[3] Eidgenoessisches Finanzdepartement EFD. Uebernahme der Credit Suisse durch die UBS.
https://www.efd.admin.ch/efd/de/home/finanzplatz/uebernahme-
credit-suisse-ubs.html. Accessed: 2024-03-16. 2024 (cit. on p. 1).

[4] Switzerland Global Enterprise. Switzerland again leads the world in patents. https://www.s-
ge.com/en/article/news/20231-ranking-european-patent-office?ct.
Accessed: 2024-03-16. 2024 (cit. on p. 1).

[5] Clare Hampel. globalEDGE Blog: Switzerland’s Business Trends: Unique Advantages for
International Companies. https : / / globaledge . msu . edu / blog / post /
57333 / switzerland ’ s - business - trends -- unique - advantages - for -
international-companies-. Accessed: 2024-03-16. 2024 (cit. on p. 1).

[6] BBC. India signs $100bn free trade deal with four European nations. https://www.bbc.
com/news/world-asia-68531241. Accessed: 2024-03-16. 2024 (cit. on p. 1).

[7] Fortune Business Insights. Natural Language Processing (NLP) Market Size Growth, 2032.
https : / / www . fortunebusinessinsights . com / industry - reports /
natural- language- processing- nlp- market- 101933. Accessed: 2024-03-16.
2024 (cit. on p. 1).

[8] Ashish Vaswani, Noam Shazeer, Niki Parmar, et al. ”Attention Is All You Need“. In: (2017). arXiv:
1706.03762 [astro-ph.IM]. URL: http://arxiv.org/pdf/1706.03762.pdf
(cit. on pp. 1, 16).

[9] R. Guha, Rob McCool, and Eric Miller. ”Semantic search“. In: Proceedings of the twelfth in-
ternational conference on World Wide Web - WWW ’03. WWW ’03. ACM Press, 2003. DOI:
10.1145/775152.775250. URL: http://dx.doi.org/10.1145/775152.775250
(cit. on pp. 1, 10).

[10] Alec Radford. Improving language understanding with unsupervised learning. https : / /
openai.com/research/language-unsupervised. Accessed: 2024-03-16. 2024 (cit.
on pp. 1, 9, 16).

[11] Richard Elsasser. ”Bridging the Gap, An Online Platform for Swiss-Indian Startup Collaboration“.
MA thesis. FHNW School of Business, 2023 (cit. on p. 2).

[12] arvindpdmn. Information Retrieval. https : / / devopedia . org / information -
retrieval. Accessed: 2024-03-17. 2024 (cit. on p. 4).

[13] Nick Babich. Best Practices for Search Results. https : / / uxplanet . org / best -
practices-for-search-results-1bbed9d7a311. Accessed: 2024-03-18. 2024 (cit.
on p. 8).

[14] FannyV. Search UX Best Practices. https : / / pencilandpaper . io / articles /
search-ux/. Accessed: 2024-03-18. 2024 (cit. on p. 8).

[15] Tomas Mikolov, Kai Chen, Greg Corrado, et al. ”Efficient Estimation of Word Representations
in Vector Space“. In: (2013). arXiv: 1301.3781 [astro-ph.IM]. URL: http://arxiv.
org/pdf/1301.3781.pdf (cit. on p. 9).

[16] Nils Reimers and Iryna Gurevych. ”Sentence-BERT: Sentence Embeddings using Siamese BERT-
Networks“. In: (2019). arXiv: 1908.10084 [astro-ph.IM]. URL: http://arxiv.org/
pdf/1908.10084.pdf (cit. on p. 9).

https://www.ibef.org/news/infosys-becomes-4th-indian-company-to-touch-100-bn-market-cap
https://www.ibef.org/news/infosys-becomes-4th-indian-company-to-touch-100-bn-market-cap
https://www.worldometers.info/world-population/
https://www.worldometers.info/world-population/
https://www.efd.admin.ch/efd/de/home/finanzplatz/uebernahme-credit-suisse-ubs.html
https://www.efd.admin.ch/efd/de/home/finanzplatz/uebernahme-credit-suisse-ubs.html
https://www.s-ge.com/en/article/news/20231-ranking-european-patent-office?ct
https://www.s-ge.com/en/article/news/20231-ranking-european-patent-office?ct
https://globaledge.msu.edu/blog/post/57333/switzerland's-business-trends--unique-advantages-for-international-companies-
https://globaledge.msu.edu/blog/post/57333/switzerland's-business-trends--unique-advantages-for-international-companies-
https://globaledge.msu.edu/blog/post/57333/switzerland's-business-trends--unique-advantages-for-international-companies-
https://www.bbc.com/news/world-asia-68531241
https://www.bbc.com/news/world-asia-68531241
https://www.fortunebusinessinsights.com/industry-reports/natural-language-processing-nlp-market-101933
https://www.fortunebusinessinsights.com/industry-reports/natural-language-processing-nlp-market-101933
https://arxiv.org/abs/1706.03762
http://arxiv.org/pdf/1706.03762.pdf
https://doi.org/10.1145/775152.775250
http://dx.doi.org/10.1145/775152.775250
https://openai.com/research/language-unsupervised
https://openai.com/research/language-unsupervised
https://devopedia.org/information-retrieval
https://devopedia.org/information-retrieval
https://uxplanet.org/best-practices-for-search-results-1bbed9d7a311
https://uxplanet.org/best-practices-for-search-results-1bbed9d7a311
https://pencilandpaper.io/articles/search-ux/
https://pencilandpaper.io/articles/search-ux/
https://arxiv.org/abs/1301.3781
http://arxiv.org/pdf/1301.3781.pdf
http://arxiv.org/pdf/1301.3781.pdf
https://arxiv.org/abs/1908.10084
http://arxiv.org/pdf/1908.10084.pdf
http://arxiv.org/pdf/1908.10084.pdf

74 REFERENCES

[17] Jacob Devlin, Ming-Wei Chang, Kenton Lee, et al. ”BERT: Pre-training of Deep Bidi-
rectional Transformers for Language Understanding“. In: (2018). arXiv: 1810 . 04805
[astro-ph.IM]. URL: http://arxiv.org/pdf/1810.04805.pdf (cit. on p. 9).

[18] Wenhao Zhu, Hongyi Liu, Qingxiu Dong, et al. ”Multilingual Machine Translation with
Large Language Models: Empirical Results and Analysis“. In: (2023). arXiv: 2304.04675
[astro-ph.IM]. URL: http://arxiv.org/pdf/2304.04675 (cit. on p. 9).

[19] Tom B. Brown, Benjamin Mann, Nick Ryder, et al. ”Language Models are Few-Shot Learners“.
In: (2020). arXiv: 2005.14165 [astro-ph.IM]. URL: http://arxiv.org/pdf/
2005.14165.pdf (cit. on p. 9).

[20] Luis Serrano. What Are Word and Sentence Embeddings? https://txt.cohere.com/
sentence-word-embeddings/. Accessed: 2024-03-15. 2024 (cit. on p. 9).

[21] Patrick Lewis, Ethan Perez, Aleksandra Piktus, et al. ”Retrieval-Augmented Generation for
Knowledge-Intensive NLP Tasks“. In: (2020). arXiv: 2005.11401 [astro-ph.IM]. URL:
http://arxiv.org/pdf/2005.11401.pdf (cit. on p. 10).

[22] Ziwei Xu, Sanjay Jain, and Mohan Kankanhalli. ”Hallucination is Inevitable: An Innate Limitation
of Large Language Models“. In: (2024). arXiv: 2401.11817 [astro-ph.IM]. URL: http:
//arxiv.org/pdf/2401.11817 (cit. on p. 10).

[23] Frederic Agnes Jeremy Ferrero. Using Word Embedding for Cross-Language Plagiarism Detec-
tion. https://aclanthology.org/E17-2066.pdf. Accessed: 2024-03-17. 2024 (cit.
on p. 10).

[24] Xiangyu Zhao, Maolin Wang, Xinjian Zhao, et al. ”Embedding in Recommender Systems: A Sur-
vey“. In: (2023). arXiv: 2310.18608 [astro-ph.IM]. URL: http://arxiv.org/pdf/
2310.18608 (cit. on p. 10).

[25] Alec Radford, Jong Wook Kim, Chris Hallacy, et al. ”Learning Transferable Visual Models From
Natural Language Supervision“. In: (2021). arXiv: 2103 . 00020 [astro-ph.IM]. URL:
http://arxiv.org/pdf/2103.00020.pdf (cit. on p. 10).

[26] Chenshuang Zhang, Chaoning Zhang, Mengchun Zhang, et al. ”Text-to-image Diffusion Models
in Generative AI: A Survey“. In: (2023). arXiv: 2303.07909 [astro-ph.IM]. URL: http:
//arxiv.org/pdf/2303.07909 (cit. on p. 10).

[27] Uriel Singer, Adam Polyak, Thomas Hayes, et al. ”Make-A-Video: Text-to-Video Generation
without Text-Video Data“. In: (2022). arXiv: 2209.14792 [astro-ph.IM]. URL: http:
//arxiv.org/pdf/2209.14792.pdf (cit. on p. 10).

[28] Elasticsearch Documentation. What is Semantic Search? A Comprehensive Semantic Search
Guide. https://www.elastic.co/what-is/semantic-search. Accessed: 2024-
03-19. 2024 (cit. on p. 10).

[29] Google Research. Information Retrieval and the Web. https : / / research . google /
research- areas/information- retrieval- and- the- web/. Accessed: 2024-
03-17. 2024 (cit. on p. 11).

[30] Haixun Wang and Taesik Na. ”Rethinking E-Commerce Search“. In: (2023). arXiv: 2312.03217
[astro-ph.IM]. URL: http://arxiv.org/pdf/2312.03217 (cit. on p. 11).

[31] Harald Steck et al. ”Deep learning for recommender systems: A Netflix case study“. In: AI Mag-
azine 42.3 (Sept. 2021), pp. 7–18. ISSN: 2371-9621. DOI: 10.1609/aimag.v42i3.18140.
URL: http://dx.doi.org/10.1609/aimag.v42i3.18140 (cit. on p. 11).

[32] Sergey Brin Lawrence Page. The PageRank Citation Ranking: Bringing Order to the Web.
https://www.eecs.harvard.edu/˜michaelm/CS222/pagerank.pdf. Accessed:
2024-03-17. 2024 (cit. on p. 11).

[33] Google Research. Introducing the Knowledge Graph: things, not strings. https://blog.
google/products/search/introducing-knowledge-graph-things-not/.
Accessed: 2024-03-17. 2024 (cit. on p. 11).

https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/1810.04805
http://arxiv.org/pdf/1810.04805.pdf
https://arxiv.org/abs/2304.04675
https://arxiv.org/abs/2304.04675
http://arxiv.org/pdf/2304.04675
https://arxiv.org/abs/2005.14165
http://arxiv.org/pdf/2005.14165.pdf
http://arxiv.org/pdf/2005.14165.pdf
https://txt.cohere.com/sentence-word-embeddings/
https://txt.cohere.com/sentence-word-embeddings/
https://arxiv.org/abs/2005.11401
http://arxiv.org/pdf/2005.11401.pdf
https://arxiv.org/abs/2401.11817
http://arxiv.org/pdf/2401.11817
http://arxiv.org/pdf/2401.11817
https://aclanthology.org/E17-2066.pdf
https://arxiv.org/abs/2310.18608
http://arxiv.org/pdf/2310.18608
http://arxiv.org/pdf/2310.18608
https://arxiv.org/abs/2103.00020
http://arxiv.org/pdf/2103.00020.pdf
https://arxiv.org/abs/2303.07909
http://arxiv.org/pdf/2303.07909
http://arxiv.org/pdf/2303.07909
https://arxiv.org/abs/2209.14792
http://arxiv.org/pdf/2209.14792.pdf
http://arxiv.org/pdf/2209.14792.pdf
https://www.elastic.co/what-is/semantic-search
https://research.google/research-areas/information-retrieval-and-the-web/
https://research.google/research-areas/information-retrieval-and-the-web/
https://arxiv.org/abs/2312.03217
https://arxiv.org/abs/2312.03217
http://arxiv.org/pdf/2312.03217
https://doi.org/10.1609/aimag.v42i3.18140
http://dx.doi.org/10.1609/aimag.v42i3.18140
https://www.eecs.harvard.edu/~michaelm/CS222/pagerank.pdf
https://blog.google/products/search/introducing-knowledge-graph-things-not/
https://blog.google/products/search/introducing-knowledge-graph-things-not/

REFERENCES 75

[34] Kailash A. Hambarde and Hugo Proença. ”Information Retrieval: Recent Advances and Beyond“.
In: IEEE Access 11 (2023), pp. 76581–76604. ISSN: 2169-3536. DOI: 10.1109/access.
2023.3295776. URL: http://dx.doi.org/10.1109/ACCESS.2023.3295776
(cit. on p. 11).

[35] Anand Rajaraman and Jeffrey David Ullman. ”Mining of Massive Datasets“. In: Mining of Massive
Datasets. Cambridge University Press, 2011, pp. 1–17. DOI: 10.1017/cbo9781139058452.
002. URL: http://dx.doi.org/10.1017/CBO9781139058452.002 (cit. on p. 11).

[36] Stephen Robertson and Hugo Zaragoza. The Probabilistic Relevance Framework: BM25 and Be-
yond. https://www.staff.city.ac.uk/˜sbrp622/papers/foundations_
bm25_review.pdf. Accessed: 2024-03-17. 2024 (cit. on p. 11).

[37] PostgreSQLGlobalDevelopmentGroup. PostgreSQL: Documentation: 12 Text Search Types. Ac-
cessed: 2024-01-30. Feb. 2024. URL: https://www.postgresql.org/docs/16/
textsearch.html (cit. on p. 13).

[38] Laurent Cazanove. When does Postgres stop being good enough for full text search? https:
//blog.meilisearch.com/postgres-full-text-search-limitations/.
Accessed: 2024-02-26. 2023 (cit. on p. 13).

[39] Bo Andersen. Understanding Sharding in Elasticsearch. https://codingexplained.
com/coding/elasticsearch/understanding-sharding-in-elasticsearch.
Accessed: 2024-03-03. 2024 (cit. on p. 14).

[40] Robert Geirhos, Patricia Rubisch, Claudio Michaelis, et al. ”ImageNet-trained CNNs are biased
towards texture; increasing shape bias improves accuracy and robustness“. In: (2018). arXiv:
1811.12231 [astro-ph.IM]. URL: http://arxiv.org/pdf/1811.12231 (cit.
on p. 15).

[41] Hadas Kotek. Gender bias and stereotypes in Large Language Models. https://dl.acm.
org/doi/fullHtml/10.1145/3582269.3615599. Accessed: 2024-03-17. 2024 (cit. on
p. 15).

[42] Ondra Urban. Is web scraping legal? Yes, if you know the rules. https://blog.apify.
com/is-web-scraping-legal/#is-scraping-copyrighted-content-legal.
Accessed: 2024-03-03. 2024 (cit. on p. 16).

[43] Sondos Mahmoud Bsharat, Aidar Myrzakhan, and Zhiqiang Shen. ”Principled Instructions Are
All You Need for Questioning LLaMA-1/2, GPT-3.5/4“. In: (2023). arXiv: 2312 . 16171
[astro-ph.IM]. URL: http://arxiv.org/pdf/2312.16171 (cit. on p. 18).

[44] Jason Wei, Xuezhi Wang, Dale Schuurmans, et al. ”Chain-of-Thought Prompting Elicits Rea-
soning in Large Language Models“. In: (2022). arXiv: 2201.11903 [astro-ph.IM]. URL:
http://arxiv.org/pdf/2201.11903 (cit. on p. 18).

[45] Leland McInnes, John Healy, and James Melville. ”UMAP: Uniform Manifold Approximation
and Projection for Dimension Reduction“. In: (2018). arXiv: 1802.03426 [astro-ph.IM].
URL: http://arxiv.org/pdf/1802.03426 (cit. on p. 19).

[46] Atlassian. Microservices vs. monolithic architecture. https : / / www . atlassian .
com/microservices/microservices- architecture/microservices- vs-
monolith. Accessed: 2024-03-10. 2024 (cit. on p. 23).

[47] Avi Networks. What is Auto Scaling? Definition FAQs. https://avinetworks.com/
glossary/auto-scaling/. Accessed: 2024-02-27. 2024 (cit. on p. 24).

[48] Erich Gamma et al. Design Patterns. en. Addison-Wesley Professional, Janu. ISBN: 0-201-63361-2
(cit. on p. 33).

[49] Jake Wells. Find anything blazingly fast with Google’s vector search technology. https://
cloud . google . com / blog / topics / developers - practitioners / find -
anything-blazingly-fast-googles-vector-search-technology author=Jake
Wells, 2021 (cit. on p. 35).

https://doi.org/10.1109/access.2023.3295776
https://doi.org/10.1109/access.2023.3295776
http://dx.doi.org/10.1109/ACCESS.2023.3295776
https://doi.org/10.1017/cbo9781139058452.002
https://doi.org/10.1017/cbo9781139058452.002
http://dx.doi.org/10.1017/CBO9781139058452.002
https://www.staff.city.ac.uk/~sbrp622/papers/foundations_bm25_review.pdf
https://www.staff.city.ac.uk/~sbrp622/papers/foundations_bm25_review.pdf
https://www.postgresql.org/docs/16/textsearch.html
https://www.postgresql.org/docs/16/textsearch.html
https://blog.meilisearch.com/postgres-full-text-search-limitations/
https://blog.meilisearch.com/postgres-full-text-search-limitations/
https://codingexplained.com/coding/elasticsearch/understanding-sharding-in-elasticsearch
https://codingexplained.com/coding/elasticsearch/understanding-sharding-in-elasticsearch
https://arxiv.org/abs/1811.12231
http://arxiv.org/pdf/1811.12231
https://dl.acm.org/doi/fullHtml/10.1145/3582269.3615599
https://dl.acm.org/doi/fullHtml/10.1145/3582269.3615599
https://blog.apify.com/is-web-scraping-legal/#is-scraping-copyrighted-content-legal
https://blog.apify.com/is-web-scraping-legal/#is-scraping-copyrighted-content-legal
https://arxiv.org/abs/2312.16171
https://arxiv.org/abs/2312.16171
http://arxiv.org/pdf/2312.16171
https://arxiv.org/abs/2201.11903
http://arxiv.org/pdf/2201.11903
https://arxiv.org/abs/1802.03426
http://arxiv.org/pdf/1802.03426
https://www.atlassian.com/microservices/microservices-architecture/microservices-vs-monolith
https://www.atlassian.com/microservices/microservices-architecture/microservices-vs-monolith
https://www.atlassian.com/microservices/microservices-architecture/microservices-vs-monolith
https://avinetworks.com/glossary/auto-scaling/
https://avinetworks.com/glossary/auto-scaling/
https://cloud.google.com/blog/topics/developers-practitioners/find-anything-blazingly-fast-googles-vector-search-technology
https://cloud.google.com/blog/topics/developers-practitioners/find-anything-blazingly-fast-googles-vector-search-technology
https://cloud.google.com/blog/topics/developers-practitioners/find-anything-blazingly-fast-googles-vector-search-technology

76 REFERENCES

[50] Faisal Rahutomo, Teruaki Kitasuka, and Masayoshi Aritsugi. ”Semantic Cosine Similarity“. In:
Oct. 2012 (cit. on p. 37).

[51] Christopher Winslett. HNSW Indexes with Postgres and pgvector. https : / / www .
crunchydata.com/blog/hnsw- indexes- with- postgres- and- pgvector.
Accessed: 2024-03-03. 2024 (cit. on p. 38).

[52] Apple Developer Documentation. About the Rosetta Translation Environment. https : / /
developer . apple . com / documentation / apple - silicon / about - the -
rosetta-translation-environment. Accessed: 2024-03-22. 2024 (cit. on p. 45).

[53] Omar Khattab and Matei Zaharia. ”ColBERT: Efficient and Effective Passage Search via Contex-
tualized Late Interaction over BERT“. In: (2020). arXiv: 2004.12832 [astro-ph.IM]. URL:
http://arxiv.org/pdf/2004.12832 (cit. on p. 65).

[54] Langchain Blog. Query Transformations. https://blog.langchain.dev/query-
transformations/. Accessed: 2024-03-18. 2024 (cit. on pp. 65, 70).

[55] LLamaIndex Blog. Using LLM’s for Retrieval and Reranking. https://www.llamaindex.
ai/blog/using-llms-for-retrieval-and-reranking-23cf2d3a14b6. Ac-
cessed: 2024-03-19. 2024 (cit. on p. 69).

[56] Priyanka Mandikal and Raymond Mooney. ”Sparse Meets Dense: A Hybrid Approach to En-
hance Scientific Document Retrieval“. In: (2024). arXiv: 2401.04055 [astro-ph.IM]. URL:
http://arxiv.org/pdf/2401.04055 (cit. on p. 70).

[57] Dify Blog. Introducing Hybrid Search and Rerank to Improve the Retrieval Accuracy of the RAG
System. https://dify.ai/blog/hybrid-search-rerank-rag-improvement.
Accessed: 2024-03-19. 2024 (cit. on p. 70).

[58] OpenAI. ChatGPT. https://openai.com/chatgpt. Accessed: 2024-03-22. 2024 (cit. on
p. 77).

[59] Google DeepMind. Gemini. https://deepmind.google/technologies/gemini/
#introduction. Accessed: 2024-03-22. 2024 (cit. on p. 77).

[60] Grammarly Inc. Grammarly: Free AI Writing Assistance. https://www.grammarly.com/.
Accessed: 2024-03-22. 2024 (cit. on p. 77).

[61] Inc. Perplexity AI. Perplexity AI. https://www.perplexity.ai/. Accessed: 2024-03-22.
2024 (cit. on p. 77).

[62] GitHub. GitHub Copilot - Your AI pair programmer. https://github.com/features/
copilot. Accessed: 2024-03-22. 2024 (cit. on p. 77).

[63] OpenAI. DALL-E 3. https://openai.com/dall-e-3. Accessed: 2024-03-21. 2024 (cit.
on p. 77).

https://www.crunchydata.com/blog/hnsw-indexes-with-postgres-and-pgvector
https://www.crunchydata.com/blog/hnsw-indexes-with-postgres-and-pgvector
https://developer.apple.com/documentation/apple-silicon/about-the-rosetta-translation-environment
https://developer.apple.com/documentation/apple-silicon/about-the-rosetta-translation-environment
https://developer.apple.com/documentation/apple-silicon/about-the-rosetta-translation-environment
https://arxiv.org/abs/2004.12832
http://arxiv.org/pdf/2004.12832
https://blog.langchain.dev/query-transformations/
https://blog.langchain.dev/query-transformations/
https://www.llamaindex.ai/blog/using-llms-for-retrieval-and-reranking-23cf2d3a14b6
https://www.llamaindex.ai/blog/using-llms-for-retrieval-and-reranking-23cf2d3a14b6
https://arxiv.org/abs/2401.04055
http://arxiv.org/pdf/2401.04055
https://dify.ai/blog/hybrid-search-rerank-rag-improvement
https://openai.com/chatgpt
https://deepmind.google/technologies/gemini/#introduction
https://deepmind.google/technologies/gemini/#introduction
https://www.grammarly.com/
https://www.perplexity.ai/
https://github.com/features/copilot
https://github.com/features/copilot
https://openai.com/dall-e-3

REFERENCES 77

List of Tools used

Tool Usage Sections

ChatGPT [58] Used for exploring alterna-
tive sentence structures and
rephrasing.

All Sections

Google Gemini [59] Used for exploring alterna-
tive sentence structures and
rephrasing.

All Sections

Grammarly [60] Used for grammar and style
corrections

All Sections

Perplexity [61] Used for research and inspra-
tion.

All Sections

Github Copilot [62] Used for code generation. Used during the development
of the whole platform.

Dall-E 3 [63] Generation of the cover image. Titlepage

Table 9.1: Table listing all AI-based tools used during this project.

78 LIST OF FIGURES

List of Figures

2.1 An overview of how information retrieval systems work. Image source: [12] 4

3.1 Example of the contextual search check on https://www.alibaba.com/, accessed:
19.03.2024 . 6

3.2 Example of a search on https://www.crunchbase.com/ with the results of type
“company”, accessed: 19.03.2024 . 7

3.3 Example of search suggestions and auto-completion on https://www.clutch.co/,
accessed: 19.03.2024 . 7

3.4 Example of an option to change the language on https://www.wlw.de/, accessed:
19.03.2024 . 8

3.5 Visualization of text embeddings from a sentence transformer in a vector space. Image
source: [20] . 9

3.6 Visualization of how semantic search works to find relevant results. Image source: [28] . 10

3.7 Where q is the query term, d is the document, D is all documents in the corpus, f(q, d)
returns the number of times that the term q occurs in document d and n(q,D) returns the
number of documents that the term q occurs in. 11

3.8 Where q is the query term, d is the document, D is all documents in the corpus, avgdl
the average document length in terms, f(q, d) returns the number of times that the term
q occurs in document d and n(q,D) returns the number of documents that the term q
occurs in. b and k1 are free parameters, usually chosen as b = 0.75 and k1 ∈ [1.2, 2.0]. . 12

4.1 Visualization of how Elasticsearch creates an index and splits it into shards. Image
source: [39] . 14

5.1 A simplified diagram of the prompting and generation process for a company (blue), the
products and services it offers (red) and the needs and desires it seeks (green). 18

5.2 Visualization of the text embeddings after being reduced to two dimensions. 19

6.1 Our data models. 20

6.2 A visualization of the difference between a monolith and microservices. Image source:
[46] . 23

6.3 How auto-scaling works in a simplified way. Image source: [47] 24

6.4 Layering of our microservices. 25

6.5 Wireframe for the search page. 26

7.1 The user interface for the search page. At the top are the category filters; at the bottom,
the search bar; on the left are the search results and in the center are the details of the
selected search result. The globe in the top right corner is used to set the language. . . . 29

7.2 Generated Swagger Documentation. 31

7.3 Diagram of the interface architecture for the part of the company and listing management
service (CLMS). 32

7.4 Visualization of distance functions between vectors. Image source: [49] 35

7.5 Diagram of layered graph traversal. Image source: [51]. 38

https://www.alibaba.com/
https://www.crunchbase.com/
https://www.clutch.co/
https://www.wlw.de/

LIST OF FIGURES 79

7.6 Basic Architecture of the sync between the Postgres database and Elasticsearch. 40

7.7 Overview of the End-To-End Testing setup. 43

8.1 Screenshot of the Rosetta emulation layer option in Docker Desktop. 45

8.2 Latency test of our baseline, PostgreSQL FTS. 47

8.3 Latency test of the semantic search with pgvector and the HSNW index. 48

8.4 Latency test of the semantic search with pgvector and without the HSNW index. 49

8.5 Latency Evaluation for Elasticsearch. 50

8.6 An example of an A/B test for the query “cancer”. The semantic search returned the five
results at the top. PostgreSQL FTS returned the five results at the bottom. 53

8.7 Breakdown of the survey participants. 54

8.8 The different business sectors of all survey participants. 55

8.9 The total vote distribution for all three information retrieval systems and voting schemes. 56

8.10 Analysis of whether participants found our search results for the query “a phone with
256 GB storage” better than other search tools. 57

8.11 The distribution of where the expected result is found. 61

8.12 The hit rate gain when more search results are considered. 61

8.13 Violin plots showing the distribution and median of the LLM relevance score for the top
five search results of each of our search approaches, i.e. the top-ranked search results.
In the centre of each violin is a boxplot, with the black dot being the median value of
the data and the box forming the interquartile range of the data. The data range and
distribution can also be interpreted from the violin’s shape (a histogram on its side). A
wide area showing where data points are more frequent. 63

8.14 A histogram of the standard deviation values of all LLM relevancy scores. 64

8.15 The cosine distance of search results to the search query is very tightly packed together,
making the choice difficult. 66

9.1 An overview of how a reranker could be added to the retrieval process. Image source: [55]. 69

9.2 Illustration of a hybrid approach combining semantic search and keyword search. Image
source: [57] . 70

B.1 The wireframe for the login page. 84

B.2 The wireframe for the registration page. 84

B.3 The wireframe for the email verification page. 85

B.4 The wireframe for the page to join an existing business. 85

B.5 The wireframe for the page to create a business. 86

80 LIST OF TABLES

List of Tables

3.1 Feature comparison of five of the current B2B trading platforms. 8

4.1 Comparison of our three selected information retrieval systems. ES is the abbreviation
for Elasticsearch. 13

8.1 Latency comparison of our three search approaches. SS is the short form for Semantic
Search. ES is the short form for Elasticsearch. 51

8.2 The amount of votes that the bold search approach above lost to the search approach on
the left. 58

8.3 Results of the automated evaluation using all 80 queries for each of the three search
approaches. 60

8.4 Results of the automated evaluation split between the human-written queries and the
queries the LLM generated. 62

9.1 Table listing all AI-based tools used during this project. 77

LIST OF LISTINGS 81

List of Listings
1 Example of a business sector and its description. 16
2 Generating structured output with the Instructor package and parsing it to a valid Pydan-

tic model. 17
3 Start of the english.json translation file. 30
4 Example of the translation hook used for the login page title. 30
5 Extract of an interface for listing service . 32
6 Initialization of the specific IRS implementation. 33
7 The code for searching for companies. The name tokens and description tokens are the

ts vectors. 34
8 The EmbeddingService without the communication layer. 36
9 The interface defining the search parameters for the listing service in the company and

listing management service (CLMS). 37
10 Database query for the vector nearest neighbour search using pgvector. 37
11 How to configure pgvector to use the HNSW index. 39
12 Example of how the name and description of a listing are merged before creating the text

embedding. 39
13 PGSync schema for synchronizing PostgreSQL to Elasticsearch. 41
14 Example of a test case to test the creation of a company. The test data is anonymised for

publication purposes. 44
15 Shortened version of the latency testing script . 46
16 CSV output example . 46
17 Prompts we used to generate a company. 82
18 Prompts we used to generate a company’s products. 82
19 Prompts we used to generate a company’s needs. 83
20 The prompt used for the LLM relevancy score. 83

82 A PROMPTS APPENDIX

A Prompts Appendix

Business sector context
sector_system_prompt = f"""
When talking about the {current_sector} sector then I mean companies
fulfill the following description:
{sector_description}
"""

Generate company name and description
list_of_company_names_prompt = f"""
Generate a list of company names that are unique and creative. The
companies work in {current_sector} sector. Do not use any names that
have the word "innovative" or "creative"
in them.
"""

company_name_description_prompt = f"""
Pick one of these company names and return it along with a description
of the company that is very detailed and extensive in JSON. The company
description should be between 2500 and 3000 characters long and contain
something about the company's history, what they do, and what they are
known for and their sustainability efforts. Write the description that
is either neutral or from the company's perspective.
"""

Listing 17: Prompts we used to generate a company.

Generate products and services of the company
product_ideas = f"""
Given the following company name and description, generate a possible
product or service that the company could offer.
{company.name}
{company.description}
"""

product_enhancement = f"""
Enhance the product description by adding more details to it.
Make the description more elaborate and versatile. Cover technical
specifications. Prise range, customization options, delivery options,
waiting time, etc. Be creative in thinking about any missing
product or service attributes.
"""

Listing 18: Prompts we used to generate a company’s products.

83

Generate needs of the company
need_ideas = f"""
Given the following company name and description, generate a need
the company could have from an other company. Be creative in
thinking about any gaps the company might have. A need has to have
a name and description.
{company.name}
{company.description}
"""

need_enhancement = f"""
Enhance the description by adding more details to it.
Make the description more elaborate and versatile. Cover technical
specifications. Price range, customization options.
"""

Listing 19: Prompts we used to generate a company’s needs.

prompt = f"""
You are a RELEVANCE grader; providing the relevance of the given
RESULT to the given QUERY. Respond only as a number from 0 to 10
where 0 is the least relevant and 10 is the most relevant.
A few additional scoring guidelines:
- Long RESULTS should score equally well as short RESULTS.
- RELEVANCE score should increase as the RESULT provides more
RELEVANT context to the QUERY.
- RELEVANCE score should increase as the RESULT provides RELEVANT
context to more parts of the QUERY.
- RESULT that is RELEVANT to some of the QUERY should score of 2,
3 or 4. Higher score indicates more RELEVANCE.
- RESULT that is RELEVANT to most of the QUERY should get a score
of 5, 6, 7 or 8. Higher score indicates more RELEVANCE.
- RESULT that is RELEVANT to the entire QUERY should get a score
of 9 or 10. Higher score indicates more RELEVANCE.
- RESULT must be relevant and helpful for answering the entire
QUERY to get a score of 10.
- Answers that intentionally do not answer the question, such as
'I don't know', should also be counted as the most relevant.
- Never elaborate.

QUERY: {query}
RESULT: {name} - {description}
RELEVANCE:
"""

Listing 20: The prompt used for the LLM relevancy score.

84 B ONBOARDING WIREFRAMES APPENDIX

B Onboarding Wireframes Appendix

Figure B.1: The wireframe for the login page.

Figure B.2: The wireframe for the registration page.

85

Figure B.3: The wireframe for the email verification page.

Figure B.4: The wireframe for the page to join an existing business.

86 B ONBOARDING WIREFRAMES APPENDIX

Figure B.5: The wireframe for the page to create a business.

18/03/2024, 21:08 Bridging the Gap Survey

https://de.surveymonkey.com/r/GBY6GYX 1/3

Bridging the Gap

Comparing Text Retrieval Systems for
Companies & Products

Dear Participant,

Thank you sincerely for dedicating your time to
assist us in the evaluation of our bachelor thesis
project.

To provide you with a brief overview, our bachelor
thesis revolves around the development of a
platform designed to facilitate global business
connections. This platform serves as a place for
companies worldwide to engage with one
another, enabling them to identify compatible
partners, products, and services tailored to
their specific needs. In our thesis, we focus on
the platform's search and exploration
capabilities which is essential to the success of
this platform. So far most platforms for Business
to Business (B2B) trading have very inaccurate
searches, which is what we want to improve on.

Your valuable insights and feedback are
instrumental in ensuring that the platform's
search and exploration capabilities can be as
accurate as possible and provide relevant results
to the users.

The survey should not take longer than 15 minutes
to complete and can be done no matter the role!
Our focus is on A/B testing, where you are given
two different search results and should choose
which set of search results you find more
accurate or relevant to the given search query.

87

C Survey Appendix

18/03/2024, 21:08 Bridging the Gap Survey

https://de.surveymonkey.com/r/GBY6GYX 2/3

IMPORTANT: To better read the search results
you can right-click on the image of the search
results and select "Open Image in new tab", there
you will see the full-size image.

* 1. Name

* First name

* Last name

* 2. Business Sector

Information Technology (IT) and Software

Development

Engineering

Manufacturing

Energy and Utilities

Financial Services

Healthcare and Pharmaceuticals

Other (please specify)

* 3. Are you currently or have you previously been
directly involved in Business to Business (B2B)
trading?

Yes

18/03/2024, 21:08 Bridging the Gap Survey

https://de.surveymonkey.com/r/GBY6GYX 3/3

1 / 8 12%

Powered by

See how easy it is to create surveys and forms.

Privacy & Cookie Notice

No

Next

18/03/2024, 21:08 Bridging the Gap Survey

https://de.surveymonkey.com/r/GBY6GYX 1/3

Bridging the Gap

Comparing Search Results

In the following questions, we will do a
comparison of our searching solutions.

You will see two images where each picture
represents search results from a different
searching solution. In a picture, you will see 5
products or services our search solutions deem to
be the most relevant to the query. Please
compare the results and select, which one of
the two you find more relevant for the search
query that was given. For each search query we
will provide a possible use case at the beginning of
the section.

You will see search results multiple times, since
we have three approaches we want to compare
with each other. You will also see some images
that contain no results and the following text:
"Sorry, we couldn't find any results for your
search :(".

The search queries will differ in complexity. This
is to accommodate the different types of searches
users may use.

The first search results we will compare are for
the search query "cancer". You could imagine
this query being used if for example a laboratory
needs equipment to research cancer and hopefully
find treatments.

18/03/2024, 21:08 Bridging the Gap Survey

https://de.surveymonkey.com/r/GBY6GYX 2/3

* 4. Results 1 of search: "Cancer"

Both search results feel equal

* 5. Results 2 of search: "Cancer"

Both search results feel equal

18/03/2024, 21:08 Bridging the Gap Survey

https://de.surveymonkey.com/r/GBY6GYX 3/3

2 / 8 25%

Powered by

See how easy it is to create surveys and forms.

* 6. Results 3 of search: "Cancer"

Both search results feel equal

* 7. These search results are better than other
search tools I have used.

Strongly agree

Agree

Neither agree nor disagree

Disagree

Strongly disagree

Prev Next

18/03/2024, 21:09 Bridging the Gap Survey

https://de.surveymonkey.com/r/GBY6GYX 1/3

Bridging the Gap

Results Comparison of "A phone with
256 GB storage"

This search query has more natural language then
the previous one for "cancer". The search query
could be thought of a query an employer might
use if he wants to bulk phones for his/her
employees.

* 8. Results 1 of search: "A phone with 256 GB
storage"

Both search results feel equal

18/03/2024, 21:09 Bridging the Gap Survey

https://de.surveymonkey.com/r/GBY6GYX 2/3

* 9. Results 2 of search: "A phone with 256 GB
storage"

Both search results feel equal

* 10. Results 3 of search: "A phone with 256 GB
storage"

Both search results feel equal

18/03/2024, 21:09 Bridging the Gap Survey

https://de.surveymonkey.com/r/GBY6GYX 3/3

3 / 8 38%

Powered by

See how easy it is to create surveys and forms.

* 11. These search results are better than other
search tools I have used.

Strongly agree

Agree

Neither agree nor disagree

Disagree

Strongly disagree

Prev Next

18/03/2024, 21:09 Bridging the Gap Survey

https://de.surveymonkey.com/r/GBY6GYX 1/3

Bridging the Gap

Results Comparison of "Machine
Learning"

Machine learning is being introduced in many
fields now. What If a business was looking for a
machine learning solution to integrate in their own
products?

* 12. Results 1 of search: "Machine learning"

Both search results feel equal

* 13. Results 2 of search: "Machine learning"

18/03/2024, 21:09 Bridging the Gap Survey

https://de.surveymonkey.com/r/GBY6GYX 2/3

Both search results feel equal

* 14. Results 3 of search: "Machine learning"

Both search results feel equal

* 15. These search results are better than other
search tools I have used.

Strongly agree

Agree

Neither agree nor disagree

Disagree

Strongly disagree

18/03/2024, 21:09 Bridging the Gap Survey

https://de.surveymonkey.com/r/GBY6GYX 3/3

4 / 8 50%

Powered by

See how easy it is to create surveys and forms.

Prev Next

18/03/2024, 21:09 Bridging the Gap Survey

https://de.surveymonkey.com/r/GBY6GYX 1/3

Bridging the Gap

Results Comparison of "Trading
algorithms"

Trading algorithms are widely used in the financial
sectors for their day-to-day trading. What if a
business wanted to purchase such an algorithm?

* 16. Results 1 of search: "Trading algorithms"

Both search results feel equal

* 17. Results 2 of search: "Trading algorithms"

18/03/2024, 21:09 Bridging the Gap Survey

https://de.surveymonkey.com/r/GBY6GYX 2/3

Both search results feel equal

* 18. Results 3 of search: "Trading algorithms"

Both search results feel equal

* 19. These search results are better than other
search tools I have used.

Strongly agree

Agree

Neither agree nor disagree

Disagree

Strongly disagree

18/03/2024, 21:09 Bridging the Gap Survey

https://de.surveymonkey.com/r/GBY6GYX 3/3

5 / 8 62%

Powered by

See how easy it is to create surveys and forms.

Prev Next

18/03/2024, 21:10 Bridging the Gap Survey

https://de.surveymonkey.com/r/GBY6GYX 1/3

Bridging the Gap

Results Comparison of "Sustainable
energy storage"

As a community we are slowly moving to more
sustainable energy production. What if I have just
installed a set of solar panels on my new factory
and was now looking for solutions to store this
energy?

* 20. Results 1 of search: "Sustainable energy
storage"

Both search results feel equal

18/03/2024, 21:10 Bridging the Gap Survey

https://de.surveymonkey.com/r/GBY6GYX 2/3

* 21. Results 2 of search: "Sustainable energy
storage"

Both search results feel equal

* 22. Results 3 of search: "Sustainable energy
storage"

Both search results feel equal

18/03/2024, 21:10 Bridging the Gap Survey

https://de.surveymonkey.com/r/GBY6GYX 3/3

6 / 8 75%

Powered by

See how easy it is to create surveys and forms.

* 23. These search results are better than other
search tools I have used.

Strongly agree

Agree

Neither agree nor disagree

Disagree

Strongly disagree

Prev Next

18/03/2024, 21:10 Bridging the Gap Survey

https://de.surveymonkey.com/r/GBY6GYX 1/3

Bridging the Gap

Results Comparison of "A gearbox for
speedy cars under 1000$"

I'm a manufacturer of race cars and need a new
gearbox on a tight budget.

* 24. Results 1 of search: "A gearbox for speedy
cars under 1000$"

Both search results feel equal

* 25. Results 2 of search: "A gearbox for speedy
cars under 1000$"

18/03/2024, 21:10 Bridging the Gap Survey

https://de.surveymonkey.com/r/GBY6GYX 2/3

Both search results feel equal

* 26. Results 3 of search: "A gearbox for speedy
cars under 1000$"

Both search results feel equal

* 27. These search results are better than other
search tools I have used.

Strongly agree

Agree

Neither agree nor disagree

Disagree

Strongly disagree

18/03/2024, 21:10 Bridging the Gap Survey

https://de.surveymonkey.com/r/GBY6GYX 3/3

7 / 8 88%

Powered by

See how easy it is to create surveys and forms.

Prev Next

18/03/2024, 21:10 Bridging the Gap Survey

https://de.surveymonkey.com/r/GBY6GYX 1/1

Bridging the Gap

Future Collaboration

8 / 8 100%

Powered by

See how easy it is to create surveys and forms.

* 28. Would you be open to participating in a
follow-up interview with regards to creating a
platform to connecting businesses?

Yes

No

29. Email

Email address

Prev Done

	Bridging_the_Gap_f.pdf
	1 Introduction
	1.1 The Gap in the Market
	1.2 Our Bridge

	2 Principles of Information Retrieval
	3 State of the Art
	3.1 B2B Trading Platforms
	3.2 Text Embeddings
	3.3 Information Retrieval

	4 Our Approaches to Searching
	4.1 PostgreSQL Full Text Search
	4.2 Semantic Search with pgvector
	4.3 Elasticsearch

	5 Our Dataset
	5.1 Existing Datasets
	5.2 Scraping Data from other Platforms
	5.3 Creating our own Dataset
	5.3.1 Prompting Chain
	5.3.2 Data Analysis
	5.3.3 Data Enhancements

	6 Conceptual Solution
	6.1 Data Models
	6.2 Frameworks and Programming Languages
	6.3 Monolith vs Microservice Architecture
	6.4 User Interface Design

	7 Solution
	7.1 Frontend
	7.1.1 Login Page
	7.1.2 Search Page
	7.1.3 Multi-Language Support

	7.2 Backend
	7.3 Implementation of our Search Approaches
	7.3.1 Changing between Systems
	7.3.2 PostgreSQL Full Text Search
	7.3.3 Semantic Search
	7.3.4 Elasticsearch

	7.4 Code Testing
	7.4.1 Linting
	7.4.2 Frontend
	7.4.3 Microservices

	8 Evaluation
	8.1 Latency Evaluation
	8.1.1 PostgreSQL FTS
	8.1.2 Semantic Search with HNSW Index
	8.1.3 Semantic Search without HNSW Index
	8.1.4 Elasticsearch
	8.1.5 Findings

	8.2 Human Evaluation
	8.2.1 Participants
	8.2.2 Comparison of Search Results
	8.2.3 Comparison with other Search Tools
	8.2.4 Findings

	8.3 Automated Evaluation
	8.3.1 Test Dataset
	8.3.2 Metrics

	8.4 Human Queries vs LLM Queries
	8.4.1 LLMs as Judges
	8.4.2 Findings

	8.5 Impact of Data Quality
	8.5.1 Findings

	9 Conclusion and Future Work
	9.1 Conclusion
	9.2 Learnings
	9.3 Future Work
	9.3.1 Matchmaking
	9.3.2 Reranker
	9.3.3 Query Transformations
	9.3.4 Hybrid Search
	9.3.5 Usability & Trustworthiness
	9.3.6 Production

	Declaration of Honesty
	References
	List of Figures
	List of Tables
	List of Listings
	A Prompts Appendix
	B Onboarding Wireframes Appendix
	C Survey Appendix

	20240322152104

